首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   62篇
  国内免费   43篇
化学   49篇
晶体学   3篇
力学   20篇
综合类   1篇
数学   79篇
物理学   106篇
  2024年   3篇
  2023年   6篇
  2022年   7篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   13篇
  2013年   11篇
  2012年   19篇
  2011年   8篇
  2010年   11篇
  2009年   11篇
  2008年   7篇
  2007年   18篇
  2006年   16篇
  2005年   14篇
  2004年   13篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
  1958年   1篇
排序方式: 共有258条查询结果,搜索用时 24 毫秒
1.
基于无人机多光谱图像的土壤水分检测方法研究   总被引:1,自引:0,他引:1  
以表层土壤为对象,探究土壤的多光谱反射率与土壤水分含量相关性,进行基于无人机多光谱图像的土壤水分含量预测模型方法的探究。选取中国农业大学通州实验站为研究区域,实地采集试验田的土壤样本100组,按照一定梯度配制土壤含水量,配成的土壤含水率为10%~50%之间,土壤含量的真实值采用土壤烘干法进行测定。多光谱相机灵巧便捷,可搭载在无人机上对土壤进行监测。将RedEdged-M型多光谱相机搭载在Phantom 3型无人机上,选择阳光充足的采集环境,实时采集土壤样本的多光谱图像,建立土壤多光谱信息与水分含量之间的模型。利用处理光谱数据的ENVI5.3软件提取土壤样本多光谱信息,以多光谱相机自带的标准白板反射率为100%,计算出土壤样本在蓝、绿、红、红边、近红外五个波段的光谱反射率。采用BP神经网络算法、支持向量机算法、偏最小二乘算法分别建立基于无人机多光谱图像的土壤水分含量的预测模型。以80组土壤样本数据作为训练集,建立基于多光谱图像的土壤水分含量预测模型。采用莱文贝格-马夸特算法对BPNN进行改进,提高了其训练速度,当网络结构为5-10-1时,训练效果最好,本文选择该网络结构;SVM采取高斯核函数,当参数为0.56时,模型效果最好。本研究采用归一化均方根误差(NRMSE)和决策系数(R 2)对三种土壤水分含量的预测模型进行定量对比。以20组土壤样本数据作为测试集,结果可知,基于BP神经网络土壤水分含量预测模型的NRMSE为0.268,R 2为0.872;基于支持向量机的土壤水分含量预测模型的NRMSE为0.298,R 2为0.821;基于偏最小二乘土壤水分含量预测模型的NRMSE为0.316,R 2为0.789。对三种模型分析可知,基于BPNN的土壤水分含量预测模型效果均较好。结果可知,土壤的光谱反射率与含水率间存在较密切的相关性,将多光谱相机搭载在无人机上可以对土壤水分含量进行有效的实时监测,对监测土壤墒情提供技术支持和理论支撑。  相似文献   
2.
本文综述了目前2,3,3,3-四氟丙烯(HFO-1234yf)的合成路线,包括氟-氯交换、脱卤化氢、脱卤、脱卤醇、脱次氯酸乙酰酯、脱水、加氢脱卤、脱氢、高温热解、SF4参与的氟化反应、脱羧等。其中,以2-氯-3,3,3-三氟丙烯(HCFO-1233xf)为原料的氟-氯交换路线、以1,1,1,2,3-五氟丙烷(HFC-245eb)为原料的脱氟化氢路线和2-氯-1,1,1,2-四氟丙烷(HCFC-244bb)为原料的脱氯化氢路线均具有原料容易合成得到、容易实现气相连续化大规模生产的优势,具有工业化价值。另外,分析对这些路线拥有独立知识产权的氟化工企业现状,提出今后HFO-1234yf领域的研究重点。  相似文献   
3.
近年来钢铁行业发展迅速,同时环境污染问题日益突出,烧结烟气污染物主要是硫化物和氮化物等,目前烧结工序强制性配套了脱硫装置,烧结烟气中硫化物能够达到排放要求。由于工业上使用的脱硝装置成本过高及脱硝方式的不成熟[1],大部分烧结工序都没有安装氮氧化物脱除装置。而烧结过程中一般使用焦粉为燃料,如果焦粉中氮含量过高会导致烧结烟气中氮氧化物过高,如果氮氧化物含量超标则会导致烧结停机,对生产运行造成较大影响,因此对焦粉中氮含量的监测尤为重要。  相似文献   
4.
5.
6.
为探讨高温花岗岩经水冷却后的细观结构损伤及动态力学性能,对水冷却后高温花岗岩开展波速和核磁共振测试,分离式霍普金森压杆冲击试验,以及冲击破碎试样的扫描电镜观察,分析比较不同状态下花岗岩波速、孔隙度和动力学参数的变化规律。研究发现:随着温度升高,经水冷却处理后高温花岗岩波速非线性下降,大孔径孔隙度分量增大,且水冷却后试样的孔隙孔径尺寸和数量均大于自然冷却;水冷却后高温花岗岩动力学参数呈现出随着温度升高,峰值应力减小,峰值应变增大,弹性模量则先增大后减小的规律;由于水冷却使高温花岗岩表面温度急剧降低,产生额外的温度应力,花岗岩内部损伤加剧,表现出更低的波速与峰值应力;而水的冷淬作用一定程度上提高了表层花岗岩的硬度,降低了高温后花岗岩的塑性能力,与自然冷却相比水冷却后花岗岩的峰值应变减小,弹性模量增大,表现出脆性破坏特征。在温度低于400 ℃时,冷却方式对冲击裂纹影响不大,随着温度升高到800 ℃,自然冷却后花岗岩冲击断面呈蜂窝状,而水冷却后冲击断面则相对平整。  相似文献   
7.
采用连续单频1.56μm激光光源作为泵浦光,通过周期极化铌酸锂晶体外腔倍频过程实验制备出位于原子吸收波线的780nm明亮振幅压缩态光场。在利用2个模清洁器过滤基频光的强度噪声、使之在分析频率4MHz处达到散粒噪声的基础上,利用谐振倍频获得输出功率为10mW、转换效率达40%的倍频光,实测的780nm明亮振幅压缩光的压缩度为0.6dB。  相似文献   
8.
In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations.  相似文献   
9.
<正>不久前,国务院发布《国务院关于加快科技服务业发展的若干意见》(简称《意见》)。《意见》提到,重点发展研究开发、技术转移、检验检测认证、创业孵化、知识产权、科技咨询、科技金融、科学技术普及等专业科技服务和综合科技服务,提升科技服务业对科技创新和产业发展的支撑能力。检验检测认证作为科技服务业的重要组成部分,受到国务院关注。《意见》提到,加快发展第三方检验检测认证服务,鼓励不同所有制检验检测认证机构平等参与市场竞争。加  相似文献   
10.
吴建福(C.F.Jeff Wu)教授是美国工程院院士、台湾中研院院士、国际工程统计领域的领军性人物。自2003年加盟佐治亚理工学院工业和系统工程系(ISyE)担任工程统计讲座教授以来,短短几年间将ISyE系的工程统计方向提升到了国际级水准,其证明是,经过吴建福教授聘任到这个小组的前五位教员全部拿到了美国国家科学基金青年学者奖(EARLY CAREER AWARD)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号