首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1308篇
  免费   452篇
  国内免费   497篇
化学   810篇
晶体学   27篇
力学   145篇
综合类   24篇
数学   337篇
物理学   914篇
  2023年   45篇
  2022年   57篇
  2021年   39篇
  2020年   35篇
  2019年   61篇
  2018年   84篇
  2017年   36篇
  2016年   56篇
  2015年   34篇
  2014年   106篇
  2013年   84篇
  2012年   92篇
  2011年   108篇
  2010年   119篇
  2009年   119篇
  2008年   129篇
  2007年   126篇
  2006年   105篇
  2005年   84篇
  2004年   78篇
  2003年   88篇
  2002年   61篇
  2001年   71篇
  2000年   53篇
  1999年   65篇
  1998年   36篇
  1997年   46篇
  1996年   26篇
  1995年   31篇
  1994年   25篇
  1993年   14篇
  1992年   18篇
  1991年   11篇
  1990年   12篇
  1989年   12篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   15篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   2篇
  1966年   3篇
  1964年   2篇
  1963年   2篇
  1958年   1篇
  1957年   1篇
排序方式: 共有2257条查询结果,搜索用时 31 毫秒
1.
针对点阵夹层结构主动热防护问题,建立了夹层结构面板和芯体导热与冷却剂对流耦合的非稳态传热理论模型,利用有限体积法离散控制方程并在MATLAB中进行了迭代求解.模型首次考虑了面板与夹芯杆之间的收缩热阻,并利用分离变量法得到了收缩热阻的近似解析解.基于单胞模型和周期性边界条件,模拟得到了模型所需的表面对流传热系数h_(b)和h_(fin).最后,选取多单胞计算工况进行数值模拟和理论模型对比,并讨论了收缩热阻对模型预测精度的影响.结果表明:理论模型能够准确预测夹层结构及内部流体的温度变化,理论与仿真之间的最大误差不超过1%;随着外加热流密度不断增大,忽略收缩热阻使得计算结果造成的误差不断增大;与数值模拟相比,理论模型可显著地减少计算时间并节省计算资源,尤其适用于非均匀、非稳态复杂热载荷下点阵夹层结构的温度响应计算.  相似文献   
2.
现有多种形式的橡胶本构模型试图预测橡胶力学性质,其中部分模型已写入有限元软件中用于仿真计算,还存在较多拟合性较好的模型无法在有限元材料库中直接获得。本文详述了由不变量和主伸长率描写的各向同性超弹性本构模型的数值实现方法,并结合最新的本构模型开发了UHYPER和UMAT子程序。将UHYPER用于有限元实现对多孔橡胶板的拉伸仿真,对比仿真和试验结果,验证子程序的正确性以及评估本构模型预测复杂应变场的准确性;将UMAT用于单轴、等双轴和剪切拉伸的有限元仿真,对比仿真和本构模型理论结果,验证子程序的可靠性。结果表明,有限元仿真结果与理论结果拟合较好,子程序能够契合本构模型的力学描述,所述方法可以用于超弹性材料的数值计算。  相似文献   
3.
为建设适应新时代要求,突出高阶性、创新性、挑战度的一流本科课程,实现价值引领、能力培养和知识传授的教育教学目标,结合功能材料专业的特点和民族高等院校学生的学情,构建了物理化学基础课程的“四模块、三阶段、两时空、双平台”的混合式教学新模式,重塑了“价值引领模块、基础理论模块、多学科融合模块和虚拟仿真实验模块”的“四模块”内容体系。通过“四模块”嵌入下的混合式教学实践研究,结合学生的课前、课中、课后等学习成绩,多维度评价学习效果,并藉由调查问卷来分析学生对混合式教学的评价,最终研究结果表明学生的个性化自主学习能力有了显著提高、学生运用物理化学理论解决复杂问题的综合能力得到了提升,学生经过刻苦学习获得了素质提高的成就感。  相似文献   
4.
毛宁  吴峰  惠治鑫  冯国林 《物理通报》2022,(8):63-67+73
将传统学习环节依据布鲁姆教育目标分类学划分层级,以“圆周运动”模型建构为载体,研究如何从传授知识为主的传统课程过渡到以知识育人的课程改革,培养学生的建模能力.以模型建构教学为例开展深度学习教学设计,实现从浅层学习到深度学习的跨越.  相似文献   
5.
颗粒材料的本构关系对岩土工程等众多领域至关重要. 不同于传统的唯象本构理论, 本文基于机器学习模型探索了一种细观力学理论指导下的数据驱动型颗粒材料本构关系预测方法. 根据Vogit均质化假设, 建立了小应变条件下颗粒材料应力?应变解析关系, 此关系唯一地确定了一组与颗粒材料本构行为相关的细观组构变量. 这些变量与反应颗粒材料宏观性质的主应力和主应变信息通过一系列离散元三轴压缩数值试验获得. 考虑到细观组构变量为内变量, 不能直接作为本构模型的输入. 本文基于有向图方法将颗粒材料微观结构信息隐式地包含在应力?应变的预测当中, 并采用门控循环单元(GRU)循环神经网络作为基础深度学习模型描述有向图中结点之间的映射关系. 通过将有向图从目标节点沿源节点展开, 整个应力?应变预测模型可由两个神经网络分别训练并组装而成. 将训练后的深度学习模型在全新的数据集上进行测试, 结果表明该训练策略能有效捕捉到颗粒材料在常规三轴任意加卸载, 等中主应力系数b的真三轴加载, 和等平均有效应力p的真三轴加卸载等复杂多轴加载工况下的应力?应变响应关系, 模型具有良好的内插和外推预测能力. 考虑到深度学习模型捕捉颗粒材料力学响应的能力及其开放式学习的特点, 充分结合数据驱动方法和理论本构模型可能是颗粒材料本构研究的一个重要方向.   相似文献   
6.
采用SiLENSe(Simulator of light emitters based on nitride semiconductors)软件仿真研究了AlxInyGa1-x-yN电子阻挡层(EBL)Al组分渐变方式对GaN基激光二极管(LD)光电性能的影响,实现了提高输出功率和电光转换效率的目的。文中提出的四种Al组分渐变方式分别是传统均匀组分、右阶梯渐变组分(0~0.07~0.16)、三角形渐变组分(0~0.16~0)、左阶梯渐变组分(0.16~0.07~0)。结果表明,与传统均匀组分EBL结构相比,Al组分阶梯渐变AlxInyGa1-x-yN EBL LD导带底的电子势垒显著提高,价带顶的空穴势垒降低。这主要是由于该结构能有效抑制电子泄漏和提高空穴注入效率,从而提高有源区载流子浓度,进而提高有源区辐射复合效率。当注入电流为0.48 A时,采用Al组分阶梯渐变AlxInyGa1-x-y...  相似文献   
7.
针对深水固井作业过程中水泥水化放热较大,易致使环空地层天然气水合物分解的技术难题,本文以石蜡为芯材,碳酸钡为壁材,制备了一种油井用相变微胶囊。首先,利用FT-IR、DSC、TGA与SEM对相变微胶囊的化学组成、热性能与微观形貌进行了表征。结果表明:相变微胶囊的封装效率为67.40%,具有较高的封装效率和良好的潜热储存能力。其次,对粒径分布与润湿性能进行了测试。结果表明:微胶囊颗粒平均粒径为4.946 μm,小于水泥颗粒粒径17.201 μm,可较好的镶嵌在水泥石中,并充填于水泥水化产物之间,减小对水泥石力学性能的负面影响;微胶囊与水的静态接触角为46.8°,具有良好的亲水性能,可应用于水基的水泥浆环境中。最后,将微胶囊应用于水泥浆体系,研究了水泥浆的水化温升和水化热。结果表明:与空白水泥浆相比,加入12%相变微胶囊水泥浆的最高水化温升与水化热(48 h)分别下降了14.56%和43.23%。   相似文献   
8.
脱卤亚磺化反应是引入氟烷基基团的一种常用方法.探索了α-三氟甲基苄溴在脱卤亚磺化条件下的反应,发现产物并不是亚磺酸盐[Ar CH(CF_3)SO_2Na],而是烷基硫酸盐[Ar CH(CF_3)OSO_3Na].即使在烯烃的存在的条件下,α-三氟甲基苄溴在脱卤亚磺化条件下产生了自由基,也不与烯烃发生加成反应,而是直接生成亚磺酸盐,亚磺酸盐被空气氧化成烷基硫酸盐.  相似文献   
9.
综述了水和白酒中异味物质检测的样品前处理方法(包括液液萃取、固相萃取、液相微萃取、固相微萃取、搅拌棒吸附萃取、吹扫捕集、顶空等)和检测方法(包括气相色谱法、气相色谱-质谱法、气相色谱-飞行时间质谱法)的研究进展(引用文献52篇)。  相似文献   
10.
针对氧乐果合成过程中温度控制具有参数时变、时滞后、非线性的特点,提出了一种基于改进粒子群算法的支持向量回归的建模方法。对于支持向量回归模型,3个参数(ε,C,γ)的选取很大程度上决定了其拟合的精度和泛化能力的好坏,采用改进的粒子群算法对参数(ε,C,γ)进行同时寻优,建立了改进的氧乐果合成过程PSO-SVR回归模型,该模型具有很好的学习能力和推广能力。实验结果表明,模型较好地体现了系统的动态特性,可用于氧乐果合成过程的模型预估控制,提高系统的控制品质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号