首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   27篇
  国内免费   10篇
化学   266篇
晶体学   3篇
力学   22篇
综合类   3篇
数学   93篇
物理学   147篇
  2023年   9篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   18篇
  2018年   21篇
  2017年   14篇
  2016年   27篇
  2015年   20篇
  2014年   27篇
  2013年   42篇
  2012年   40篇
  2011年   52篇
  2010年   24篇
  2009年   21篇
  2008年   22篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   14篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1996年   8篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1963年   1篇
  1956年   1篇
  1939年   1篇
  1934年   1篇
  1933年   3篇
  1887年   1篇
排序方式: 共有534条查询结果,搜索用时 140 毫秒
1.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size–shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.  相似文献   
2.
Type 2 Diabetes Mellitus (T2D) is a chronic, obesity-related, and inflammatory disorder characterize by insulin resistance, inadequate insulin secretion, hyperglycemia, and excessive glucagon secretion. Exendin-4 (EX), a clinically established antidiabetic medication that acts as a glucagon-like peptide-1 receptor agonist, is effective in lowering glucose levels and stimulating insulin secretion while significantly reducing hunger. However, the requirement for multiple daily injections due to EX's short half-life is a significant limitation in its clinical application, leading to high treatment costs and patient inconvenience. To address this issue, an injectable hydrogel system is developed that can provide sustained EX release at the injection site, reducing the need for daily injections. In this study, the electrospray technique is examine to form EX@CS nanospheres by electrostatic interaction between cationic chitosan (CS) and negatively charged EX. These nanospheres are uniformly dispersed in a pH-temperature responsive pentablock copolymer, which forms micelles and undergoes sol-to-gel transition at physiological conditions. Following injection, the hydrogel gradually degraded, exhibiting excellent biocompatibility. The EX@CS nanospheres are subsequently released, maintaining therapeutic levels for over 72 h compared to free EX solution. The findings demonstrate that the pH-temperature responsive hydrogel system containing EX@CS nanospheres can be a promising platform for the treatment of T2D.  相似文献   
3.
Capillary electrophoresis-frontal analysis is one of the most frequently used approaches for the study of plasma protein-drug interactions as a substantial part of new drug development. However, the capillary electrophoresis-frontal analysis typically combined with ultraviolet-visible detection suffers from insufficient concentration sensitivity, particularly for substances with limited solubility and low molar absorption coefficient. The sensitivity problem has been solved in this work by its combination with an on-line sample preconcentration. According to the knowledge of the authors this combination has never been used to characterize plasma protein-drug binding. It resulted in a fully automated and versatile methodology for the characterization of binding interactions. Further, the validated method minimalizes the experimental errors due to a reduction in the manipulation of samples. Moreover, employing an on-line preconcentration strategy with capillary electrophoresis-frontal analysis using human serum albumin-salicylic acid as a model system improves the drug concentration sensitivity 17-fold compared to the conventional method. The value of binding constant (1.51 ± 0.63) · 104 L/mol obtained by this new capillary electrophoresis-frontal analysis modification is in agreement with the value (1.13 ± 0.28) ·104 L/mol estimated by a conventional variant of capillary electrophoresis-frontal analysis without the preconcentration step, as well as with literature data obtained using different techniques.  相似文献   
4.
The use of polyanion and polycation-sensitive membrane electrodes to detect five different preparations of fucoidan is described. Unlike linear polyanionic molecules previously measured with polymer membrane-based electrochemical sensors, fucoidans from marine brown algae are all highly branched, sulfated polysaccharides with varying charge densities and structures, depending on the species of seaweed, method of extraction used and extent of purification. When tridodecylmethylammonium (TDMA) was used as the ion-exchanger, a large, non-equilibrium EMF response was observed over a concentration range of 0.5–50 μg mL−1 fucoidan. Fucoidan was also measured by titration with polycationic protamine, using a dinonylnaphthalene sulfonate (DNNS)-doped membrane electrode as the potentiometric endpoint detector. Potentiometric titration was used to determine the binding ratio between protamine and fucoidan at the neutralization endpoint for each fucoidan preparation. This binding ratio was then used to successfully determine the fucoidan content of commercially available nutritional supplements. Fucoidan was also measured in undiluted blood serum, demonstrating that this method may be applicable for measuring fucoidan for clinical applications.  相似文献   
5.
In this work, acrylamide/itaconic acid copolymeric hydrogels are prepared by free radical polymerization initiated by redox initiators of potassium persulfate and N ,N ,N ′,N ′‐tetramethyl ethylene diamine; N ,N ′methylene bisacrylamide was employed as a crosslinking agent. Aniline monomer was absorbed in the network of poly(acrylamide‐co‐itaconic acid) P(AAm‐co‐IA) hydrogel and followed by gamma radiation induced polymerization at room temperature. The novel semi‐interpenetrating network was comprised of linear polyaniline immersed in P(AAm‐co‐IA) matrix. Electrical conductivity of the hydrogels was measured using four‐probe technique. The conductivities for the prepared hydrogels are found to increase from 5.5 × 10?7 S cm?1 for P(AAm‐co‐IA) alone to 4.4 × 10?3 S cm?1 for semi‐interpenetrating polymer network P(AAm‐co‐IA)/polyaniline. Thus, a new composite hydrogel with good conductive properties also displaying enhanced mechanical strength and pH sensitivity was prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   
7.
Control of the flow around a circular cylinder is studied using Large Eddy Simulation. The influence of control by rotation and suction on the flow characteristics is considered for several Reynolds numbers. Comparisons with experiments were conducted at Re=105 for the flow with and without control. A drag reduction up to 30% is obtained for an usual suction intensity. To cite this article: G. Fournier et al., C. R. Mecanique 333 (2005).  相似文献   
8.
New, bent‐core mesogens are described in which the core of the molecule is a semiflexible, di(4‐aminocyclohexyl)methane spacer. The compounds show nematic, columnar nematic and columnar phases as shown by a combination of X‐ray diffraction and optical microscopy. The potential of these new mesogens as biaxial nematic candidates is considered.  相似文献   
9.
10.
The effect of a range of inorganic and organic acids on the radiation-induced grafting of styrene in methanol to cellulose is discussed using the simultaneous method. Sulfuric acid is the most effective acid for increasing the grafting yield, hydrochloric being the next most efficient. Acetic acid retards the copolymerization. Under the most favorable radiation conditions, inclusion of sulfuric acid (up to 1.1 M) produces a twentyfold increase in graft. The presence of mineral acid also 1) enhances the intensity of a Trommsdorff peak if already present in the grafting solution and 2) induces a peak if none were previously present without acid. A mechanism for the enhanced acid effects in these grafting reactions is proposed involving charge-transfer intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号