首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2037篇
  免费   108篇
  国内免费   8篇
化学   1461篇
晶体学   13篇
力学   65篇
数学   313篇
物理学   301篇
  2023年   18篇
  2022年   15篇
  2021年   42篇
  2020年   62篇
  2019年   45篇
  2018年   29篇
  2017年   26篇
  2016年   68篇
  2015年   50篇
  2014年   66篇
  2013年   112篇
  2012年   156篇
  2011年   201篇
  2010年   110篇
  2009年   91篇
  2008年   151篇
  2007年   142篇
  2006年   146篇
  2005年   127篇
  2004年   109篇
  2003年   78篇
  2002年   56篇
  2001年   31篇
  2000年   16篇
  1999年   9篇
  1998年   10篇
  1997年   20篇
  1996年   24篇
  1995年   9篇
  1994年   8篇
  1993年   16篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1978年   4篇
  1975年   3篇
  1974年   4篇
  1939年   3篇
  1915年   4篇
  1913年   3篇
  1906年   2篇
  1903年   2篇
  1889年   3篇
排序方式: 共有2153条查询结果,搜索用时 18 毫秒
1.
The transamination reaction of 2,5-diaminobenzoquinonediimine (QDI) with ethylenediamine gave fluorescent 1,2,3,4-tetrahydropyrazino[2,3-g]quinoxaline (1). When the same reaction was carried out with N,N’-bis(aminoethyl)-1,3-propanediamine, a novel cationic quinoxalinium species (2) was isolated, which can be further condensed with p-cyanobenzaldehyde to afford a benzimidazolo-fused quinoxaline dye (3) that is a water-soluble fluorophore in the UV–visible range.  相似文献   
2.
Thienoguanosine (thG) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, thG exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto–amino tautomers. We herein investigate the photophysics of thG in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5–20.5 and 7–13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of thG, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.  相似文献   
3.
The synthesis of dyad and triad aza‐BODIPY‐porphyrin systems in two steps starting from an aryl‐substituted aza‐BODIPY chromophore is described. The properties of the resulting aza‐BODIPY‐porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination.  相似文献   
4.
5.
This article deals with the Kumada Catalyst Transfer Polycondensation (KCTP) of 4,7‐dioctylbenzo[2,1‐b:3,4‐b']dithiophene ( BDP‐Oct ) using Ni(II) catalyst or In/cat combination. A combination of MALDI MS, GPC, and 31P NMR spectroscopy is used to reveal the failure of the KCTP of this particular monomer. Intermolecular transfer reactions to monomer appeared to prevent the formation of polymer. This result is remarkable, since isomeric benzo[1,2‐b:4,5‐b']dithiophene polymerizes in a controlled way. The presence of a “non‐aromatic double bond” in annulated monomers is discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1706–1712  相似文献   
6.
Amphiphilic polycarbonate–poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)‐b‐poly(β‐malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD), associated with iPrOH as an initiator, provided iPrO?PTMC?OH, which served as a macroinitiator in the controlled ROP of benzyl β‐malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO?PTMC‐b‐PMLABe?OH copolymers were then hydrogenolyzed into the parent iPrO?PTMC‐b‐PMLA?OH copolymers. A range of well‐defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol?1; ÐM=1.28–1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC‐b‐PMLA copolymers with different hydrophilic weight fractions (11–75 %) self‐assembled in phosphate‐buffered saline upon nanoprecipitation into well‐defined nano‐objects with Dh=61–176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta‐potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC‐b‐PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.  相似文献   
7.
The synthesis of alkyne functionalized bipyridine ruthenium complexes are reported. The improved synthetic approach through application of stable protecting groups prevents formation of possible side products while facilitating purification. By applying copper-catalysed azide-alkyne cycloaddition reactions (CuAAC) pyrene units with flexible alkyl linkers are introduced at the periphery of the complex, opening up various applications including surface immobilization and DNA intercalation. All complexes are characterized structurally as well as photophysically, especially regarding the influence of the introduced alkyne and triazolyl substituents on their photophysical behavior.  相似文献   
8.
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S)=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+-P(S)=S. The ionization potential of G-P(S)=S was calculated to be slightly lower than that of guanine in 5′-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S)=S led to dithiyl radical (P-2S.) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S)=S concentrations showed a bimolecular conversion of P-2S. to the σ2-σ*1-bonded dimer anion radical [-P-2S 2S-P-]G (150 K, DFT)=−7.2 kcal mol−1]. However, [-P-2S 2S-P-] formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=−1.4 kcal mol−1]. Neither P-2S. nor [-P-2S 2S-P-] oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.  相似文献   
9.
Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches.  相似文献   
10.
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号