首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
力学   5篇
数学   8篇
物理学   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  1998年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Her-Terng Yau 《Physics letters. A》2008,372(14):2380-2385
This Letter presents a robust control scheme to generalized projective synchronization between two identical two-degrees-of-freedom heavy symmetric gyroscopes with dead zone nonlinear inputs. Because of the nonlinear terms of the gyroscope system, the system exhibits complex and chaotic motions. By the Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode. Then, two sliding mode controllers (SMC) are designed to guarantee the hitting of the sliding surfaces even when the control inputs contain dead-zone nonlinearity. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well for the proposed controller.  相似文献   
2.
A nonlinear system for controlling flutter in an aeroelastic system is proposed. The dynamic model describes the plunge and pitch motion of a wing. Interacting nonlinear forces such as structural and aerodynamic forces cause destabilizing phenomena such as flutter and limit cycle oscillation on the wing. Aeroelastic models have a wing section with only a single trailing-edge control surface for suppressing limit cycle oscillation. When modeling a single control surface, the controller design can achieve trajectory control of either plunge displacement or pitch angle, but not both, and internal dynamics describe the residual motion in closed-loop systems. Internal dynamics of aeroelasticity depend on model parameters such as freestream velocity and spring constant. Since single control surfaces have limited effectiveness, this study used leading- and trailing-edge control surfaces to improve control of limit-cycle oscillation. Moreover, two control surfaces were used to provide sufficient flexibility to shape both the plunge and the pitch responses. In this study, high order sliding mode control (HOSMC) with backstepping design achieved system stability and eliminated limit cycle phenomenon. Compared to the conventional sliding mode control design, the proposed control law not only preserves system robustness, but also avoids chatter phenomenon. Simulation results show that the proposed controller effectively regulate the response to origin in state space even under saturated controller input.  相似文献   
3.
A sliding mode control is designed to stabilize the well-known hyperchaos of Rössler system to equilibrium points subject to sector nonlinear input. The proposed control law is robust against both the input nonlinearity and external disturbance. The error bound can be arbitrarily set by assigning the corresponding dynamics to the sliding surfaces when the desired state is not an equilibrium point. Simulation results show that the system state can be regulated to an equilibrium point in the state space. It is also seen that the system still possesses advantage of fast response and good transient performance even though the control input is nonlinear.  相似文献   
4.
The nonlinear dynamic behavior of a rigid rotor supported by a spherical gas journal bearing system is analyzed using a hybrid method combining the differential transformation method (DTM) and the finite difference method (FDM). The analytical results reveal that the bearing system has a complex dynamic behavior comprising periodic, subharmonic, and quasi-periodic responses of the rotor center. The evolution in the dynamic behavior of the bearing system is systematically examined as the rotor mass and bearing number are increased. The analytical results are found to be in good agreement with those of other numerical methods. Hence, the validity of the proposed hybrid method as a means of gaining insights into the nonlinear dynamics of spherical gas film rotor-bearing systems is confirmed.  相似文献   
5.
An aeroelastic system is a nonlinear system with two freedoms, i.e., the plunge displacement and the pitch angle, in a dynamic system model. A chaos effect or a limit cycle oscillation is presumably attributed to the nonlinear effect of the pitch angle mentioned above or the interaction between the aerodynamic behaviors. It is that a single trailing edge input in an aeroelastic system is employed as a way to suppress the limit cycle oscillation with an exclusive choice between the plunge displacement and the pitch angle for a control law design. Consequently, the remaining inevitably turns into an internal dynamics, whose stability is adversely affected by the flight speed and structure parameters, a problem improved by no means using a singe control input design. Toward this end, this work presents a controller design criterion with multiple input channels for both the leading and training edges to remove the uncertainty effect of internal dynamics, and render more room for the response design of the plunge displacement as well as the pitch angle. Mostly due to external disturbance and unknown uncertainty, there is a deviation between the intended and implemented system performances for a robust control design, a mainstream research issue in the modern control. As a consequence of a sliding mode control utilized here, the limit cycle oscillation suffered in an aeroelastic system is removed effectively by the use of a terminal sliding mode control, and the chattering phenomenon seen in the control signal is hence eliminated by his method. It is seen from simulations that the control system is stably assured to reach the target within a limited time frame with an addition of a saturation function to the control law.  相似文献   
6.
This paper presents an adaptive sliding mode control scheme for Lorenz chaos subject to saturating input. The state of Lorenz system can be asymptotically driven to an equilibrium point in spite of the presence of input saturation and external disturbance using the proposed control scheme. Numerical simulations demonstrate the effectiveness of its application to chaotic system control. It also shows that the settling time will be decreased, if the saturation bound of control input is relaxed.  相似文献   
7.
Chaos synchronization using fuzzy logic controller   总被引:1,自引:0,他引:1  
The design of a rule-based controller for a class of master-slave chaos synchronization is presented in this paper. In traditional fuzzy logic control (FLC) design, it takes a long time to obtain the membership functions and rule base by trial-and-error tuning. To cope with this problem, we directly construct the fuzzy rules subject to a common Lyapunov function such that the master–slave chaos systems satisfy stability in the Lyapunov sense. Unlike conventional approaches, the resulting control law has less maximum magnitude of the instantaneous control command and it can reduce the actuator saturation phenomenon in real physic system. Two examples of Duffing–Holmes system and Lorenz system are presented to illustrate the effectiveness of the proposed controller.  相似文献   
8.
This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension.The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*.It is found that the system is more stable with higher dimensionless parameter l*. Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid.The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided.  相似文献   
9.
The hybrid squeeze-film damper bearing with active control is proposed in this paper and the lubricating with couple stress fluid is also taken into consideration. The pressure distribution and the dynamics of a rigid rotor supported by such bearing are studied. A PD (proportional-plus-derivative) controller is used to stabilize the rotor-bearing system. Numerical results show that, due to the nonlinear factors of oil film force, the trajectory of the rotor demonstrates a complex dynamics with rotational speed ratio s. Poincaré maps, bifurcation diagrams, and power spectra are used to analyze the behavior of the rotor trajectory in the horizontal and vertical directions under different operating conditions. The maximum Lyapunov exponent and fractal dimension concepts are used to determine if the system is in a state of chaotic motion. Numerical results show that the maximum Lyapunov exponent of this system is positive and the dimension of the rotor trajectory is fractal at the non-dimensional speed ratio s = 3.0, which indicate that the rotor trajectory is chaotic under such operation condition. In order to avoid the nonsynchronous chaotic vibrations, an increased proportional gain is applied to control this system. It is shown that the rotor trajectory will leave chaotic motion to periodic motion in the steady state under control action. Besides, the rotor dynamic responses of the system will be more stable by using couple stress fluid.  相似文献   
10.
This paper employs differential transformation (DT) method to analyze and control the dynamic behavior of a gyroscope system. The analytical results reveal a complex dynamic behavior comprising periodic, subharmonic, quasiperiodic, and chaotic responses of the center of gravity. Furthermore, the results reveal the changes which take place in the dynamic behavior of the gyroscope system as the external force is increased. The current analytical results by DT method are found to be in good agreement with those of Runge?CKutta (RK) method. In order to suppress the chaotic behavior in gyroscope system, the sliding mode controller (SMC) is used and guaranteed the stability of the system from chaotic motion to periodic motion. Numerical simulations are shown to verify the results. The proposed DT method and controlling scheme provide an effective means of gaining insights into the nonlinear dynamics and controlling of gyroscope systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号