首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   40篇
  国内免费   68篇
化学   62篇
晶体学   6篇
力学   2篇
综合类   2篇
数学   3篇
物理学   84篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   11篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   10篇
  2007年   6篇
  2006年   11篇
  2005年   3篇
  2004年   10篇
  2003年   6篇
  2001年   9篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有159条查询结果,搜索用时 93 毫秒
1.
对高性能超级电容器不断增长的需求促进了电极隔膜和电极材料的快速发展。静电纺丝法制备的纳米纤维具有较高的孔隙率、较好电化学活性、较大的表面积以及良好的结构稳定性等优点,已被广泛应用于超级电容器的隔膜和电极材料。本文简要综述了近年来电纺纳米纤维在超级电容器用隔膜和电极材料的研究进展;着重讨论了通过静电纺丝和其他后处理方法制备的碳基纳米纤维、碳基复合纳米纤维、导电聚合物基复合纳米纤维和金属氧化物纳米纤维等用于超级电容器的电极材料。研究表明,多孔结构的构建、活化处理以及杂原子掺杂可以提高碳纳米纤维的比表面积、电化学活性、润湿性和石墨化程度,从而增强其电化学性能。此外,通过共混、化学沉积和电化学沉积等方法,将碳纳米纤维与金属氧化物、导电聚合物结合,可以改善其电容、倍率性能和循环稳定性。最后,提出上述研究中存在的问题,并对未来静电纺丝纳米纤维材料在超级电容器的发展前景进行了展望。  相似文献   
2.
金属丝网橡胶材料是一种完全由金属丝编织成的多孔复合材料,与传统螺旋卷制金属橡胶材料相比,其改进了成型工艺,剔除了制备过程中大量的手工工艺干扰,提高机械化程度,重合度更高,拥有更稳定的力学性能.由于金属丝网橡胶材料具有承载能力高、阻尼大、耐高温、耐低温、耐老化、抗油抗腐蚀等优良特性,在很多方面强于传统橡胶,多用于航空航天、船舶、军事武器等军工工业.弹簧-金属丝网橡胶组合减振器具有可设计刚度和较高承载能力,但因其具有复杂的非线性迟滞特性,目前相关材料的本构模型还难以准确描述其力学特性.本文在弹簧-金属丝网橡胶组合减振器静态迟滞力学性能实验的基础上,结合其干摩擦阻尼迟滞特性,提出了一种迟滞力学性能理论模型.根据减振器迟滞实验恢复力-位移曲线特点,利用参数分离的方法将迟滞曲线分解为弹性恢复力和干摩擦阻尼力,分别建模求解等效刚度和干摩擦阻尼系数,以此建立了组合减振器理论模型,并与实验结果进行对比及进行误差分析,验证了理论模型的准确性.  相似文献   
3.
张冰  张磊  张蕾 《发光学报》2017,38(5):623-629
采用三能级系统的速率方程和功率传输方程并考虑温度对各项参数的影响,求解在不同的光纤长度和量子点掺杂浓度时,3.3nm PbSe量子点液芯光纤的发射光谱随温度的变化。发现当光纤长度不同时,随着温度的升高,光谱的峰值位置以相近的速率发生红移,光谱的峰值强度下降。对于较长的光纤,其光强随温度升高的衰减速率较大。当掺杂浓度不同时,随着温度的升高,光谱的峰值位置以相近的速率发生红移,峰值强度以相近的速率衰减。  相似文献   
4.
构建了基于杂交链反应的比色免疫分析方法,实现了对肿瘤标志物癌胚抗原的检测。在抗原-抗体的特异性结合作用下,在磁珠表面构建夹心式免疫复合物,进一步结合杂交链式反应(HCR)作为信号放大策略,将染料曙红Y嵌入至DNA长链中。在可见光的照射下,能使反应底液中的四甲基联苯胺(TMB)氧化,发生明显的颜色变化,由无色变为蓝色,且与癌胚抗原的浓度呈正相关性。在最优实验条件下,癌胚抗原的浓度在1 pg/mL^5 ng/mL范围内呈线性变化,检出限为1 pg/mL。  相似文献   
5.
利用离子速度影像技术结合共振增强多光子电离(REMPI)技术, 研究了邻溴甲苯在234和267 nm激光作用下的光解机理. 平动能分布表明, 基态Br(2P3/2)和自旋轨道激发态Br*(2P1/2)产生于两个解离通道: 快通道和慢通道. 快通道的各向异性参数在234 nm分别为1.15(Br)和0.55(Br*), 在267 nm分别为0.90(Br)和0.60(Br*). 慢通道的各向异性参数在234 nm分别为0.12(Br)和0.14(Br*), 在267 nm分别为0.11(Br)和0.10(Br*). 源自于慢通道的Br和Br*碎片的各向异性弱于快通道. Br(2P3/2)的相对量子产率Φ(Br)在234 nm为0.67, 在267 nm为0.70. 邻溴甲苯在234 和267 nm光解主要产生基态产物Br(2P3/2). 快通道产生于(π, π*)束缚单重态被激发, 随后通过排斥性(n, σ*)态的预解离. 慢通道各向异性参数接近零, 由此证实慢通道来源于单重激发态内转换到高振动基态而引发的热解离.  相似文献   
6.
离子速度成像方法研究碘代正戊烷的紫外光解动力学   总被引:2,自引:0,他引:2  
利用离子速度成像方法对n-C5H11I分子在266和277 nm下的光解动力学进行了研究. 实验分析了I*(5p 2P1/2)和I(5p 2P3/2)的离子影像, 得到其相应速度、角度分布和相对量子产率, 并根据相对量子产率和角度分布计算了不同解离通道的比例. 实验发现n-C5H11I的3Q0和1Q1态之间存在较强的耦合效应, 并且随着波长的减小, 这种非绝热耦合作用有递增的趋势. 由离子影像(I*和I)的角度分布结果发现, 在同一解离激光波长下I*的各向异性参数β值比I的β值小, 其中I*主要由3Q0直接解离产生, 而I绝大多数是由分子先跃迁到3Q0再经过3Q0→1Q1的非绝热耦合产生.  相似文献   
7.
孙博  佘俊  张冰  冒亚军 《中国物理 C》2009,33(12):1354-1357
We analyze the left-right asymmetry in the semi-inclusive deep inelastic scattering (SIDIS) process using a method where no weighting function are used. Considering all flavor of quarks, we reanalyze the π±production and extend our calculation on the K± production. The predictions on HERMES, COMPASS and JLab kinematics with transversely polarized nucleon target are shown in this paper.  相似文献   
8.
张冰  柴常春  杨银堂 《物理学报》2010,59(11):8063-8070
基于对静电放电(electrostatic discharge,ESD)应力下高电压、大电流特性的研究,本文通过优化晶格自加热漂移-扩散模型和热力学模型,并应用优化模型建立了全新的0.6 μm CSMC 6S06DPDM-CT02 CMOS工艺下栅接地NMOS (gate grounded NMOS,ggNMOS)ESD保护电路3D模型,对所建模型中漏接触孔到栅距离(drain contact to gate spacing,DCGS)与源接触孔到栅距离(source contact to gate sp 关键词: 栅接地NMOS 静电放电 漏接触孔到栅的距离 源接触孔到栅的距离  相似文献   
9.
利用双色双光子质量分辨的阈值电离光谱技术,研究了对位乙氧基苯酚顺式和反式两种构型的离子态振动特性. 测得顺式和反式精确的绝热电离势分别为61565±5和61670±5 cm-1. 与对位甲氧基苯酚实验结果比较,顺式和反式的测得的绝热电离势分别降低了645和643 cm-1. 从所得到的两种构型的高分辨离子态光谱中,可知顺式和反式不同构型对苯环平面的振动影响很小,而低频率的C-OC2H5弯曲振动在两种构型中都很活跃.  相似文献   
10.
迷迭香中微量元素与黄酮类化合物的含量分析   总被引:1,自引:0,他引:1  
以甲醇为溶剂用索氏提取法提取迷迭香中总黄酮,用比色法测定了其含量;并采用电感耦合等离子体-原子发射光谱仪(ICP-AES)测定了该植物中9种微量元素的含量.结果表明:迷迭香中黄酮类化合物的含量为1.61mg/g,加样回收率为98.98%-100.06%,RSD为0.419%(n=6),该法操作简便,重现性好,适合于黄酮类化合物含量的测定;迷迭香中Fe、K、Mg、Mn、Zn含量丰富.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号