首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   4篇
化学   15篇
数学   1篇
物理学   3篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   4篇
排序方式: 共有19条查询结果,搜索用时 937 毫秒
1.
A novel organic conjugated polymer based on star-shaped triazine-functional triphenylamine framework poly[1,3,5-tris(4-diphenylamino-phenyl)triazine] (PTDAPTz) is designed and synthesized successfully by FeCl3-catalysted chemical oxidative polymerization. The polymer PTDAPTz powder exhibits a compactly packed pleated skirt shape-like morphology with a high surface area (~930 m2 g−1) and a bimodal pore size distribution ranging from micropores (~0.55 nm) to small diameter mesopores (~2–6 nm). As explored as the cathode material, the obtained PTDAPTz presents the double charge–discharge process characteristics of both the free radical redox of triphenylamine unit and the bipolar redox of triazine unit in the polymer and a well-defined multistage charge/discharge voltage plateau (~3.8 V for p-doped and ~2.0 V for n-doped) during the charge–discharge process. Also, the PTDAPTz demonstrates an improved capacity (stabilized at 123 mA h g−1 until 50th cycle) and the enhanced rate performance compared to polytriphenylamine (PTPAn). Specially, the discharge curve for the part of triphenylamine unit presents an obviously improved discharge plateau (~3.8 V for PTDAPTz compared to ~3.6 V for PTPAn) due to the electron-withdrawing effect of the triazine unit to triphenylamine. The elaborate structural design and created micro-/mesoporous morphology with the double charge–discharge process make PTDAPTz a potential candidate as the performance-improved cathode of Li-organic battery. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2574–2583  相似文献   
2.
A novel nitroxide radical-containing aniline, 4-(6-(2-amino-phenol-9H-yl)hexanoyloxy)-2,2,6,6-tetramethylpiperidin-1-yloxy (AnT), was synthesized, and the copolymers of AnT and aniline (P (An-co-AnT)) were then prepared by chemical oxidative polymerization. The introduction of polyaniline (PAn) skeleton in copolymers improved the charge migration along polymer backbone, and the increased ratio of An/AnT monomer makes PAn’s anodic peak in copolymers shift to negative potential and the redox peaks for the nitroxide radical shift to the positive potential. Also, P (An-co-AnT) exhibited a gradually increased charged specific capacity from 120.1 to 141.0 mAh g?1 with increasing the feeding ratio of AnT/An, while the discharge specific capacity presented an opposite result. Specially, P (An-co-AnT) exhibited an obvious charge voltage platform and an even improved cycling stability than that of PAn in the high feeding ratio of AnT/An, and after 20 cycles, the discharge capacity of P (An-co-AnT) (1:1 ([An]/[AnT])) still maintained 82.7 % of the capacity obtained at the initial cycle.  相似文献   
3.
A type of novel electroanalytical sensing nanobiocomposite material was prepared by electropolymerization of pyrrole containing poly(amidoamine) dendrimers‐encapsulated platinum nanoparticles (Pt‐PAMAM), and glucose oxidase (GOx). The Pt nanoparticles encapsulated in PAMAM are nearly monodisperse with an average diameter of 3 nm, and they provide electrical conductivity. Polypyrrole acts as a polymer backbone to give stable and homogeneous cast thin films, and it also defines the electrical conductivity. Both Polypyrrole and PAMAM can provide a favorable microenvironment to keep the bioactivity of enzymes such as glucose oxidase. The homogeneity of GOx/Pt‐PAMAM‐PPy nanobiocomposite films was characterized by atomic force microscopy (AFM). Amperometric biosensors fabricated with these materials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and amperometric measurements in the presence of hydrogen peroxide or glucose. All those show the resultant biosensor sensitivity was strongly enhanced within the nanobiocomposite film. The optimized glucose biosensor displayed a sensitivity of 164 μA mM?1 cm?1, a linear range of 0.2 to 600 μM, a detection limit of 10 nM, and a response time of <3 s.  相似文献   
4.
In this paper, by using the balancing method and the extended tanh-function method, we obtain the exact traveling wave solutions of Kundu equation with fifth-order nonlinear term. Applications of this method to some other nonlinear partial differential equations are also presented.  相似文献   
5.
Two types of acrylate rubber (AR)-based damping blends were prepared by using two types of phenolic resins (PF), a resole resin (RR) and a novolac resin (NR), as organic fillers. The structure and damping properties of the AR/RR and AR/NR blends obtained by hot-pressing were characterized and compared by Fourier transform infrared spectrum, scanning electron microscopy, differential scanning calorimetry, and dynamic mechanical analysis. The results showed that the chemical structures of PF and the hot-pressing process had a significant effect on the damping properties of the AR-based composites. The loss peak of AR/RR shifted to a lower temperature accompanied with a gradually reduced peak intensity with the increase of RR content. In contrast, hot-pressed AR/NR showed great improvement in damping properties, which can broaden the effective damping temperature region and an increase in the temperature of the loss peak. It was thus concluded that NR with linear structure and abundant phenolic hydroxyl groups, which can create effective hydrogen bonds with an AR matrix, even after hot-pressing, makes it a promising NR to choose as an organic additive in ARs to prepare advanced damping blends.  相似文献   
6.
Journal of Solid State Electrochemistry - Electrode material is a key factor for high-energy storage battery. In this paper, graphene oxide/poly(o-phenylenediamine) (GO/PoPD) hybrid composite is...  相似文献   
7.
以取代或未取代(硫)色满酮和芳香醛为原料,在氢氧化钠催化下,分别采用常规溶剂法与无溶剂研磨法两种不同方式,合成一系列新型的3-取代(硫)色满-4-酮衍生物3a~3l.无溶剂研磨法具有操作简便、反应条件温和、反应时间短、对环境友好等优点.所合成的标题化合物的结构通过IR,1H NMR,13C NMR和MS进行了鉴定和表征.  相似文献   
8.
Asymmetric ring‐opening reactions of N‐Boc‐azabenzonorbornadiene with N‐substituted piperazine nucleophiles in the presence of 5 mol% of [Rh(COD)Cl]2 and 10 mol% of chiral ligand, (R,S)‐PPF‐P‐t‐Bu2, gave the corresponding 1,2‐diamine product in moderate to excellent yields (up to 95%) with reasonable enantiomeric excesses (up to 70% ee). The results showed that the nature of ligands had significant influence on the yields and the enantiomeric excesses.  相似文献   
9.
A hyphenated method for mercury speciation analysis by the coupling of high performance liquid chromatography and inductively coupled plasma mass spectrometry with the online strong anion exchange column (SAX) preconcentration was developed. The Hg analytes (Hg+, MeHg, EtHg and Hg2+) were absorbed on the SAX column preconditioned with sodium 3-mercapto-1-propanesulfonate, and then rapidly eluted (less than 16 s) by 5 μL 3% (v/v) 2-mercaptoethanol. The enrichment factors of 1025 for Hg+, 1084 for MeHg, 1108 for EtHg and 1046 for Hg2+ were obtained using 6 mL sample in a 1.5-min enrichment procedure. Rapid separation of the four mercurial compounds was achieved within 5 min on a 50-mm C18 column using 0.5% (v/v) 2-mercaptoethanol as the mobile phase. The detection limits for Hg+, MeHg, EtHg and Hg2+ were 0.015, 0.010, 0.009 and 0.016 ng L−1, each, and the relative standard deviations of peak height and peak area (5 ng L−1 for each Hg species) were all below 5%. Mercury speciation in three freshwater, two drinking water and two seawater samples were then analyzed by the proposed method. MeHg and Hg2+ concentrations down to 0.14 and 0.56 ng L−1 were detected in the drinking waters.  相似文献   
10.
Composite electrodes based on the nitroxide free radical-contained pyrrole copolymer (PPy-co-PPy-C-TEMPO) as active material were one-step synthesized by in situ electrochemical polymerization, which was then directly applied as the cathode of lithium ion batteries. The structure, morphology, electrochemical property, and charge-discharge performances of prepared copolymers were characterized by FTIR, SEM, cyclic voltammogram, electrochemical impedance spectroscopy, and galvanostatic charge-discharge testing, respectively. The results demonstrated that PPy-co-PPy-C-TEMPO-based composite cathodes have been successfully prepared by in situ electrochemical method, and the introduction of the nitroxide free radical (TEMPO) could obviously affect the morphology and electrochemical characteristics of the obtained electroactive polymers. And the charge/discharge tests showed that with the introduction of the TEMPO, PPy-co-PPy-C-TEMPO-based composite cathodes exhibited an improved specific capacity of 70.9 mAh g?1 for PPy-co-PPy-C-TEMPO (4:1) and 62.6 mAh g?1 for PPy-co-PPy-C-TEMPO (8:1) as measured at 20 mA g?1 between 2.5 and 4.2 V, which were remarkably higher than that of the pure PPy cathode of 41.0 mAh g?1 under the same experimental conditions. Also, the obtained PPy-co-PPy-C-TEMPO copolymers demonstrated an acceptable cycling stability during the charge-discharge process. These obtained cell performances for the composite cathodes were attributed to the application of the in situ electrochemical polymerization technology, which enhanced the intimate integration between conductive polymer film and electrode. Furthermore, the introduction of TEMPO-contained pyrrole (Py-C-TEMPO) improved the morphology of the composite cathode, which was in favor of the utilization of active materials and the improved electrochemical performances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号