首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   88篇
化学   112篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   8篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   7篇
  2000年   6篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1995年   4篇
  1994年   2篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
介绍了一个面向大三下或大四上本科生的计算化学探索性实验。通过研究乙醇分子内及分子间脱水反应机理,从分子水平理解醇脱水反应过程中酸催化剂的作用机制和反应的能量路径。通过本实验,使学生初步掌握量子化学计算通用软件高斯(Gaussian)的使用方法,掌握结构优化、频率计算、过渡态搜索等基本计算操作,并学会采用量子化学计算手段来研究化学反应的基本过程,为将来科研工作打下重要基础。  相似文献   
2.
改性纳米HZSM-5催化剂上甲苯与甲醇的烷基化反应   总被引:1,自引:0,他引:1  
以Si,P,Mg复合改性的纳米HZSM-5为催化剂,进行了甲苯与甲醇的烷基化反应;并采用X射线衍射,NH3程序升温脱附,红外和低温N2吸附等方法研究了改性前后催化剂酸性质和孔结构的变化.在小型固定床反应器上,考察了载气量、反应温度和重时空速等反应条件对烷基化反应性能的影响.在2h-1,460℃,甲苯/甲醇比,水/烃比和...  相似文献   
3.
刘军辉  宋亚坤  宋春山  郭新闻 《应用化学》2020,37(10):1099-1111
CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。  相似文献   
4.
程琪  聂小娃  郭新闻 《分子催化》2022,36(2):145-161
采用密度泛函理论(DFT)计算研究了苯酚、邻甲酚、愈创木酚在不同结构Ru-Fe(211)表面上吸附活化性能和加氢脱氧反应路径.结果表明,Ru掺杂能促进H2分子在Fe(211)表面上解离,提高加氢脱氧反应速率.酚类在1Ru_(ads)-Fe(211)表面上吸附比在1Ru_(sub)-Fe(211)表面上更稳定,苯酚和邻甲酚脱羟基步骤能垒分别降低0.13和0.28 eV,有利于生成芳烃.愈创木酚在1Ru_(sub)-Fe(211)表面上加氢脱氧优势路径是先脱甲氧基生成苯酚,苯酚再加氢脱氧生成产物苯(速控步骤能垒1.16 eV);而在1Ru_(ads)-Fe(211)表面上愈创木酚先脱羟基再脱甲基生成苯酚的路径更具有动力学优势(速控步骤能垒1.21 eV).计算结果表明Ru掺杂方式影响Fe催化剂对酚反应分子的吸附稳定性以及加氢脱氧反应路径和性能.与1Ru掺杂Fe(211)催化剂相比,增加Ru原子数形成4Ru_(ads)-Fe(211),能够进一步提高酚类反应物的吸附强度,但导致加氢脱氧反应能垒升高.因此,在Fe催化剂上以表面吸附的形式掺杂少量贵金属Ru更利于酚类加氢脱氧生成芳烃.  相似文献   
5.
 以改进方法合成的B-ZSM-5分子筛为母体,采用气固相法合成了Ti-ZSM-5分子筛,并以XRD,FT-IR,UV-Vis,XRF,SEM,ICP-AES和MAS NMR等手段对B-ZSM-5和Ti-ZSM-5进行了表征,考察了Ti-ZSM-5对苯酚羟基化反应的催化性能. 结果表明,合成B-ZSM-5时的前期低温晶化有助于晶粒的减小; 以其为母体制备的Ti-ZSM-5对苯酚羟基化反应具有优异的催化性能. 在n(PhOH)/n(H2O2)=3,n(Me2CO)/n(PhOH)=2.7,m(cat)/m(PhOH)=5%,T=353 K和t=6 h的反应条件下,苯酚转化率可达20%以上.  相似文献   
6.
以TiCl4为钛源合成钛硅分子筛   总被引:1,自引:0,他引:1  
Since titanium silicalite-1 (TS-1) was first prepared by Taramasso et al[1] in 1983,the synthesis of TS-1 and its application in partial oxidation have become a hotspot in the zeolite catalytic field.For the traditional synthesis route of TS-1,the key problem is its costly price and severe synthesis conditions,which hamper its industrial application.To avoid using costly alkali-free tetrapropylammonium hydroxide (TPAOH) as a template,Müller et al[2] reported that TS-1 could be synthesized using tetrapropylammonium bromide (TPABr) as a template with ammonia as the base to adjust the basicity of the gel.  相似文献   
7.
Nanosized zeolites have received considerable attention in the field of catalysis for their unique properties.When the crystal size of HZSM-5 is reduced to nanoscale,it exhibits higher catalytic activity,less coke and longer catalytic life in CH3OH conversion to hydrocarbons and C2H4 oligomerization[1].  相似文献   
8.
钛硅沸石的结晶动力学研究   总被引:8,自引:1,他引:7  
 在TPABr-正丁胺体系中合成了钛硅沸石TS-1, 研究了此体系中的结晶动力学,求出了不同温度下的成核速率、晶体生长速率及表观活化能. 还研究了晶种类型和用量对钛硅沸石晶化的影响. 结果表明,随着晶化温度的升高, TS-1成核诱导期缩短,成核速率及晶体生长速率加快; 加入晶种可明显缩短TS-1成核诱导期,并减小晶粒粒度; TS-1, M, ZSM-11和β沸石等均可作为晶种合成TS-1, 并存在一个最佳晶种用量; 不加晶种时TS-1成核活化能和晶体生长活化能分别为44.4和75.7 kJ/mol.  相似文献   
9.
采用真空红外光谱技术清晰地观察到了碳含量73~88w%(daf)的四个煤样及其溶剂抽出物中的五种羟基的不同氢键缔合类型,并通过原位热解红外光谱技术研究了它们的热稳定性。结果表明,它们的热稳定性顺序为:OH…π<OH…N<OH自缔合≈环状四聚体OH<OH…醚氧。  相似文献   
10.
Theshape selectivealkylationofpolycyclichy drocarbonsisusedtosynthesizesymmetricintermedi atessuchas 4 ,4′ dialkylbiphenyl (4 ,4′ DABP)and2 ,6 dialkylnaphthalene (2 ,6 DAN)whichareimpor tantprecursorsofadvancedpolymermaterials[1] .Thealkylationtoprepare4 ,4′ DABPcanbecarriedoutusingeitheralarge grouplikeisopropylorasmallgroupsuchasethylormethyl.However ,itisdiffi culttoselectivelyobtain 4 ,4′ dimethylbiphenyl(4 ,4′ DMBP)throughthemethylationofbiphenyl(BP )anditsderivatives[2 ,3] .…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号