首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2128篇
  免费   70篇
  国内免费   11篇
化学   1391篇
晶体学   19篇
力学   40篇
数学   266篇
物理学   493篇
  2023年   11篇
  2022年   11篇
  2021年   18篇
  2020年   29篇
  2019年   29篇
  2018年   13篇
  2017年   22篇
  2016年   47篇
  2015年   65篇
  2014年   48篇
  2013年   107篇
  2012年   126篇
  2011年   123篇
  2010年   86篇
  2009年   70篇
  2008年   120篇
  2007年   127篇
  2006年   101篇
  2005年   97篇
  2004年   64篇
  2003年   75篇
  2002年   69篇
  2001年   35篇
  2000年   32篇
  1999年   21篇
  1998年   22篇
  1997年   24篇
  1996年   28篇
  1995年   21篇
  1994年   22篇
  1993年   37篇
  1992年   22篇
  1991年   13篇
  1990年   21篇
  1989年   16篇
  1988年   21篇
  1987年   19篇
  1986年   12篇
  1985年   21篇
  1984年   19篇
  1983年   16篇
  1982年   20篇
  1981年   18篇
  1980年   16篇
  1979年   29篇
  1978年   17篇
  1977年   15篇
  1976年   17篇
  1973年   20篇
  1967年   10篇
排序方式: 共有2209条查询结果,搜索用时 19 毫秒
1.
Annals of Operations Research - In recent years, operations research in agriculture has improved the harvested yield, reduced the cost and time required for field operations, and maintained...  相似文献   
2.
NIFTy , “Numerical Information Field Theory,” is a software framework designed to ease the development and implementation of field inference algorithms. Field equations are formulated independently of the underlying spatial geometry allowing the user to focus on the algorithmic design. Under the hood, NIFTy ensures that the discretization of the implemented equations is consistent. This enables the user to prototype an algorithm rapidly in 1D and then apply it to high‐dimensional real‐world problems. This paper introduces NIFTy  3, a major upgrade to the original NIFTy  framework. NIFTy  3 allows the user to run inference algorithms on massively parallel high performance computing clusters without changing the implementation of the field equations. It supports n‐dimensional Cartesian spaces, spherical spaces, power spaces, and product spaces as well as transforms to their harmonic counterparts. Furthermore, NIFTy  3 is able to handle non‐scalar fields, such as vector or tensor fields. The functionality and performance of the software package is demonstrated with example code, which implements a mock inference inspired by a real‐world algorithm from the realm of information field theory. NIFTy  3 is open‐source software available under the GNU General Public License v3 (GPL‐3) at https://gitlab.mpcdf.mpg.de/ift/NIFTy/tree/NIFTy_3 .  相似文献   
3.
4.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
5.
In previous work we observed two simultaneous transitions in high molecular weight (MW) free‐standing polystyrene films that were interpreted as two thickness‐dependent reduced glass transition temperatures (Tgs). The weaker lower transition agreed well with the MW‐dependent Tg(h) previously reported, while the much stronger upper transition matched the MW‐independent Tg(h) previously observed in low‐MW free‐standing films. Here, we investigate the nature of these two transitions by inspecting the temperature dependence of the films' thermal coefficient of expansion (TCE) and present physical aging measurements using ellipsometry both below and in‐between the two transitions. TCE values indicate approximately 80 to 90% of the film solidifies at the upper transition, while only 10 to 20% remains mobile to lower temperatures, freezing out at the lower transition. Physical aging is observed at a temperature below the upper transition, but above the lower transition, indicative of the upper transition being an actual glass transition associated with the α‐relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 64–75  相似文献   
6.
Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst–catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid–acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.

Supramolecular acid–acid interactions lead to competing monomeric and dimeric pathways in phosphoric acid catalysis – so that stereoselectivities depend on catalyst concentration.  相似文献   
7.
Differently 5-substituted 8-methoxypsoralens can be synthesized by an efficient synthetic route with various cross-coupling methodologies, such as Suzuki, Sonogashira and Heck reaction. Compared to previously synthesized psoralens, thereby promising daylight absorbing compounds as potentially active agents against certain skin diseases can be readily accessed. Extensive investigations of all synthesized psoralen derivatives reveal fluorescence in the solid state as well as several distinctly emissive derivatives in solution. Donor-substituted psoralens exhibit remarkable photophysical properties, such as high fluorescence quantum yields and pronounced emission solvatochromicity and acidochromicity, which were scrutinized by Lippert–Mataga and Stern–Volmer plots. The results indicate that the compounds exceed the limit of visible light, a significant factor for potential applications as an active agent. In addition, (TD)DFT calculations were performed to elucidate the underlying electronic structure and to assign experimentally obtained data.  相似文献   
8.
Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.  相似文献   
9.
Superionic solid electrolytes (SEs) are essential for bulk-type solid-state battery (SSB) applications. Multicomponent SEs are recently attracting attention for their favorable charge-transport properties, however a thorough understanding of how configurational entropy (ΔSconf) affects ionic conductivity is lacking. Here, we successfully synthesized a series of halogen-rich lithium argyrodites with the general formula Li5.5PS4.5ClxBr1.5-x (0≤x≤1.5). Using neutron powder diffraction and 31P magic-angle spinning nuclear magnetic resonance spectroscopy, the S2−/Cl/Br occupancy on the anion sublattice was quantitatively analyzed. We show that disorder positively affects Li-ion dynamics, leading to a room-temperature ionic conductivity of 22.7 mS cm−1 (9.6 mS cm−1 in cold-pressed state) for Li5.5PS4.5Cl0.8Br0.7Sconf=1.98R). To the best of our knowledge, this is the first experimental evidence that configurational entropy of the anion sublattice correlates with ion mobility. Our results indicate the possibility of improving ionic conductivity in ceramic ion conductors by tailoring the degree of compositional complexity. Moreover, the Li5.5PS4.5Cl0.8Br0.7 SE allowed for stable cycling of single-crystal LiNi0.9Co0.06Mn0.04O2 (s-NCM90) composite cathodes in SSB cells, emphasizing that dual-substituted lithium argyrodites hold great promise in enabling high-performance electrochemical energy storage.  相似文献   
10.
Peptides and proteins are exposed to a variety of interfaces in a physiological environment, such as cell membranes, protein nanoparticles (NPs), or viruses. These interfaces have a significant impact on the interaction, self-assembly, and aggregation mechanisms of biomolecular systems. Peptide self-assembly, particularly amyloid fibril formation, is associated with a wide range of functions; however, there is a link with neurodegenerative diseases, such as Alzheimer's disease. This review highlights how interfaces affect peptide structure and the kinetics of aggregation leading to fibril formation. In nature, many surfaces are nanostructures, such as liposomes, viruses, or synthetic NPs. Once exposed to a biological medium, nanostructures are coated with a corona, which then determines their activity. Both accelerating and inhibiting effects on peptide self-assembly have been observed. When amyloid peptides adsorb to a surface, they typically concentrate locally, which promotes aggregation into insoluble fibrils. Starting from a combined experimental and theoretical approach, models that allow for a better understanding of peptide self-assembly near hard and soft matter interfaces are introduced and reviewed. Research results from recent years are presented and relationships between biological interfaces, such as membranes and viruses, and amyloid fibril formation are proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号