首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   26篇
  国内免费   5篇
化学   197篇
晶体学   1篇
力学   4篇
数学   35篇
物理学   71篇
  2024年   1篇
  2023年   1篇
  2022年   17篇
  2021年   12篇
  2020年   15篇
  2019年   24篇
  2018年   26篇
  2017年   14篇
  2016年   28篇
  2015年   19篇
  2014年   24篇
  2013年   47篇
  2012年   21篇
  2011年   24篇
  2010年   14篇
  2009年   10篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
1.
Molecular Diversity - The preparation, characterization and application of hydroxyapatite silica propyl bis aminoethoxy ethane cuprous complex (HASPBAEECC) as a novel hybrid nano-catalyst for...  相似文献   
2.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
3.
This article aims to provide a survey of biological applications of Schiff base macrocycles and their metal complexes, with emphasis given to the synthesis of the compounds and to their uses as antibacterial and antifungal agents. The literature on the subject, published during the 2005–2019 period, is shortly reviewed. This is an informed report collecting information on the addressed topic in a concise systematic way, and can be expected to be useful as a fast literature catalogue for researchers working on this and related domains.  相似文献   
4.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   
5.
6.
The approach of this work was to study the capability of graphene‐based materials in the field of biological sample preparation. A polypyrrole/graphene composite was synthesized and characterized. The potential of the nanocomposite was investigated as a sorbent in dispersive solid‐phase extraction followed by high‐performance liquid chromatography with UV detection for vancomycin as a model drug. The effect of different parameters influencing extraction efficiency such as sample pH and sample volume, ionic strength, extraction time, type, and volume of desorption solvent and desorption time were investigated. A comparison study was also conducted between polypyrrole/graphene and some different novel and classic sorbents. Under optimized conditions, the calibration curve for vancomycin showed linearity in the range of 0.05–10 μg/mL. In addition, limits of detection, and quantification were 0.003 and 0.01 μg/mL, respectively. The intraday and interday relative standard deviations at a concentration of 0.05 μg/mL (n = 3) were 1.6 and 2.1%, respectively. Furthermore, the proposed method was successfully applied for the determination of vancomycin in plasma and urine samples. The relative recoveries indicated the feasibility of graphene‐based sorbents in biological sample analysis.  相似文献   
7.
In this paper, a variable-order fractional derivative nonlinear cable equation is considered. It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of class of fractional partial differential equation with variable coefficient of fractional differential equation in various continues functions of spatial and time orders. Our main aim is to generalize the Chebyshev cardinal operational matrix to the fractional calculus. Finally, illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   
8.
A very mild and highly efficient synthesis of some novel 1H‐1,2,3‐triazolyl carboacyclic nucleosides via a ‘Click’ Huisgen cycloaddition of N‐propargyl nucleobases and azido alcohols using Cu/aminoclay/reduced graphene oxide nanohybrid (Cu/AC/r‐GO nanohybrid) as nanocatalyst is described. The preparation and characterization of Cu/AC/r‐GO nanohybrid are discussed. This catalyst was characterized by X‐ray diffraction, FT‐IR, TEM, and energy‐dispersive analysis of X‐ray techniques. Cu/AC/r‐GO nanohybrid is a stable and highly efficient heterogeneous nanocatalyst that can be easily prepared, used, and restored from the reaction mixture by simple filtration, and reused for many consecutive trials without significant decrease in activity.  相似文献   
9.
In order to develop a sensor for the detection of toxic N2O molecules, the interaction of pristine and Aldoped BN nanosheets with an N2O molecule was investigated using density functional theory calculations. It was found that unlike the pristine sheet, the Al-doped sheet can effectively interact with the N2O molecule so that its electronic properties and conductivity are dramatically changed. Webelieve that replacing a B atom of the BN sheet with an Al atom may be a good strategy for improving the sensitivity of these nanosheets toward N2O, which cannot be trapped and detected by the pristine sheet.  相似文献   
10.
Using density functional theory combined with non-equilibrium Green’s function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon–heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current–voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating localized states at the center of the corresponding defect below the Fermi energy. Simulations show that the zero-bias conductances per super-cells containing defects created by one and two CADs exhibit dip about ~0.579 and ~0.253 eV below their corresponding Fermi levels, respectively. These can be attributed to the localized states around the same energy levels. Simulations also show that the enhanced carriers scatterings within the graphenes defected by the 3D-PPHDs have increased their overall resistances, as compared with the pristine graphene. Moreover, the current–voltage characteristic calculated per super-cell for each case shows that the current for those containing one and two CADs, at an applied voltage of 0.5 V, is ~5 and 13 % less than the current calculated for the pristine super-cell of the same size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号