首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   5篇
  国内免费   5篇
化学   146篇
力学   12篇
数学   4篇
物理学   14篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   10篇
  2010年   3篇
  2009年   8篇
  2008年   9篇
  2007年   15篇
  2006年   10篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   3篇
  1992年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1972年   1篇
  1968年   1篇
排序方式: 共有176条查询结果,搜索用时 0 毫秒
1.
Shamsi SA 《Electrophoresis》2002,23(22-23):4036-4051
A review is presented to highlight several approaches for coupling capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) for analysis of chiral compounds. A short discussion of commercially available CE-MS instruments and interface design is followed by a detail review on various modes of chiral CE-MS. In general, for each CE-MS mode, the capabilities, applications and limitations for chiral analysis have been pointed out. The first mode, chiral capillary zone electrophoresis-mass spectrometry (CZE-MS) in which neutral derivatized cyclodextrins (CDs) are used is possible using either column coupling with voltage switching or a partial-filling technique (PFT). However, some applications of direct coupling of CZE-MS mode are also reported. The second mode is a chiral electrokinetic chromatography-mass spectrometry (EKC-MS) in which a charged chiral selector such as a sulfated beta-CD or a vancomycin could be conveniently employed. This is because these chiral selectors have a significantly higher countercurrent electrophoretic mobility which prevents the entrance of these selectors into the mass spectrometer. The combination of counter-migration and PFT demonstrates that this synergism could be successfully applied to chiral analysis of a broader range of compounds. It is well-known that the on-line coupling of micellar electrokinetic chromatography to mass spectrometry (MEKC-MS) is problematic because the high surface activity and nonvolatile nature of conventional surfactant molecules lower the electrospray ionization efficiency. However, a recent report demonstrates that this hyphenation is now possible with the use of molecular micelles. Various MEKC-ESI-MS parameters that can be used to optimize both chiral resolution and ESI response are discussed. Finally, two recent examples that demonstrate the feasibility of using either open-tubular or packed chiral CEC with MS are reviewed. This survey will attempt to cover the state-of-the-art on various modes of CE-MS from 1998 up to 2002.  相似文献   
2.
Norton D  Shamsi SA 《Electrophoresis》2004,25(4-5):586-593
Nonionic surfactants such as Triton X-100 (TX-100) are comprised of a mixture of oligomers with a varying degree of length in the ethoxylate chain. The development of chromatographic methods for resolution of the various oligomers of TX-100 is of environmental importance, and can be useful for quality control and characterization in industrial manufacture. Capillary electrochromatography (CEC) is fast becoming a capable separation technique that combines the benefits of both high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). This report presents a novel CEC method for separation of the various TX-100 oligomers. A comparison of monomeric vs. polymeric stationary phases for separation of TX-100 was conducted. Since the oligomers of TX-100 were better resolved on a monomeric phase as compared to polymeric phase, a systematic mobile phase tuning was performed utilizing a monomeric CEC-C18-3 microm-100 A stationary phase. Various mobile phase parameters such as acetonitrile (ACN) content, Tris concentration, pH, voltage, and temperature were manipulated in order to achieve the optimum separation of oligomers in less than 30 min.  相似文献   
3.
The mechanism of copolymerization of monomethyl and dimethyl maleates and fumarates with styrene was studied by analysis of the conformation of the acid units of the resulting copolymers. The absorption bands for C?O stretching and OH stretching in the spectra of the copolymers are fully identical. They are quite different from the spectra of the copolymers obtained from maleic anhydride and styrene that are subsequently treated with absolute methanol to give the monoester which is then esterified with diazomethane to give the diester. The acid units of the copolymers derived from maleic anhydride exist in a gauche configuration; copolymers derived from fumaric units exist in a trans conformation. The identity of copolymers derived from maleic units with those derived from fumaric units but not with those derived from maleic anhydride indicates that the first step in the copolymerization of the maleic units is an isomerization to fumaric units, which are actually the genuine comonomers.  相似文献   
4.
This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4×106 dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.  相似文献   
5.
Akbay C  Shamsi SA 《Electrophoresis》2004,25(4-5):622-634
The influence of surfactant hydrocarbon tail on the solute/pseudostationary phase interactions was examined. Four anionic sulfated surfactants with 8-, 9-, 10-, and 11-carbon chains having a polymerizable double bond at the end of the hydrocarbon chain were synthesized and characterized before and after polymerization. The critical micelle concentration (CMC), polarity, and aggregation number of the four sodium alkenyl sulfate (SAIS) surfactants were determined using fluorescence spectroscopy. The partial specific volume of the polymeric SAIS (poly-SAIS) surfactants was estimated by density measurements and capillary electrophoresis (CE) was employed for determination of methylene selectivity as well as for elution window. The CMC of the monomers of SAIS surfactants decrease with increase in chain length and correlated well when fluorescence method was compared to CE. The physicochemical properties (partial specific volume, methylene selectivity, electrophoretic mobility, and elution window) increased with an increase in chain length. However, no direct relationship was found between the aggregation number and the length of hydrophobic tail of poly-SAIS surfactants. These polymeric surfactants were then used as pseudostationary phases in micellar electrokinetic chromatography (MEKC) to study the retention behavior and selectivity factor of 36 benzene derivatives with different chemical characteristics. Although variation in chain length of the polymeric surfactants significantly affects the retention of nonhydrogen bonding (NHB) benzene derivatives, these effects were less pronounced for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) benzene derivatives. Therefore, hydrophobicity of poly-SAIS surfactants was found to be a major driving force for retention of NHB derivatives. However, for several benzene derivatives (NHB, HBA, and HBD) significantly higher selectivity factor was observed with longest chain polymeric surfactant (e.g., poly(sodium 10-undecenyl sulfate), poly-SUS) compared to shorter chain polymeric surfactant (e.g., poly(sodium 7-octenyl sulfate), poly-SOcS). In addition, the effect of the surfactant hydrophobic chain was also found to have some impact on migration order of NHB, HBA, and HBD benzene derivatives.  相似文献   
6.
For Part II of our ongoing study, we present a strategy for stationary phase optimization for the capillary electrochromatographic (CEC) separation of the 12 methylated benzo[a]pyrene (MBAP) isomers. Utilizing the optimum mobile phase conditions from Part I of our study as a guide, seven commercially available stationary phases have been evaluated for their ability to separate highly hydrophobic MBAP isomers. Ranging in design from high-performance liquid chromatography (HPLC) to CEC application, each phase was slurry packed in house and tested for CEC suitability and performance. Several stationary phase parameters were investigated for their effects on MBAP separation including bonding type (monomeric or polymeric, % carbon loading, surface coverage), pore size, particle size, and type of alkyl substituent. In this manner, the present state of commercially available packings has been assessed in our laboratory. Utilizing the optimum polymeric C18-5 microm-100 A-PAH stationary phase, the effects of CEC packed bed length and capillary inside diameter (I.D.) were also evaluated. A 50 microm I.D. capillary, 25 cm packed bed length and 75% (v/v) acetonitrile, 12.5 mM Tris, pH 8.0, 20 degrees C at 30 kV, provided resolution of 11 out of 12 MBAP isomers thus showing the effectiveness of CEC for analysis of structurally similar methylated polyaromatic hydrocarbons.  相似文献   
7.
In the present study, a new and versatile liquid-phase microextraction method is described. This method requires very simple and cheap apparatus and also a small amount of organic solvent. Eight microliters of 1-undecanol was delivered to the surface of solution containing analytes and solution was stirred for a desired time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified 1-undecanol was transferred into a suitable vial and immediately melted; then, 2 μL of it was injected into a gas chromatograph for analysis.Some polycyclic aromatic hydrocarbons (PAHs) were used as model compounds for developing and evaluating of the method performance. Analysis was carried out by gas chromatography/flame ionization detection (GC/FID).Several factors influencing the microextraction efficiency, such as the nature and volume of organic solvent, the temperature and volume of sample solution, stirring rate and extraction time were investigated and optimized. The applicability of the technique was evaluated by determination of trace amounts of PAHs in environmental samples. Under the optimized conditions, the detection limits (LOD) of the method were in the range of 0.07-1.67 μg L−1 and relative standard deviations (R.S.D.) for 10 μg L−1 PAHs were <7%. A good linearity (r2 > 0.995) in a calibration range of 0.25-300.00 μg L−1 was obtained. After 30 min extraction duration, enrichment factors were in the range of 594-1940. Finally, the proposed method was applied to the determination of trace amounts of PAHs in several real water samples, and satisfactory results were resulted. Since very simple devices were used, this new technique is affordable, efficient, and convenient for extraction and determination of low concentrations of PAHs in water samples.  相似文献   
8.
The atomic physics collaboration SPARC is a part of the APPA pillar at the future Facility for Antiproton and Ion Research. It aims at atomic-physics research across virtually the full range of atomic matter. An emphasis of this contribution are the atomic physics experiments addressing the collision dynamics in strong electro-magnetic fields as well as the fundamental interactions between electrons and heavy nuclei at the HESR. Here we give a short overview about the central instruments for SPARC experiments at this storage ring.  相似文献   
9.
In this study, graphene oxide was modified during consecutive functionalization steps with 1,4-diphenylamine, cyanuric chloride, and ethylenediamine. Then, star-shaped CuO nanoparticles were synthesized on modified graphene oxide using the seed-mediated growth method in which nucleation, growth stages, and reduction of graphene oxide to graphene occurred simultaneously. After ensuring successful synthesis of CuO nanoparticles and to facilitate recycling, a magnetization process was utilized by adding iron oxide nanoparticles. This nanocomposite was characterized by transmission electron microscopy, X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The prepared heterogeneous catalyst was investigated for the reduction of organic dyes in the presence of NaBH4 as a reducing reagent. The kinetic data obtained for the reduction of methyl orange (MO), methylene blue (MB), 4-nitrophenol (4-NP), and rhodamine 6G (Rh6G) were fitted to first-order rate equations, and the calculated rate constants for the reduction of MO, MB, 4-NP and Rh6G were as follows: −0.091, −0.071, −0.045, and 0.040, respectively. As star-shaped CuO nanoparticles showed a higher antibacterial effect compared to spherical-shaped CuO nanoparticles, the antibacterial activity of star-shaped CuO nanoparticles immobilized on magnetic functionalized graphene was evaluated against Gram-positive and Gram-negative bacteria through an agar well diffusion assay and demonstrated more antibacterial activity against gram-positive bacteria.  相似文献   
10.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号