首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   20篇
  国内免费   5篇
化学   270篇
晶体学   1篇
力学   14篇
数学   9篇
物理学   130篇
  2023年   6篇
  2022年   3篇
  2021年   22篇
  2020年   17篇
  2019年   28篇
  2018年   25篇
  2017年   18篇
  2016年   22篇
  2015年   17篇
  2014年   21篇
  2013年   43篇
  2012年   13篇
  2011年   19篇
  2010年   16篇
  2009年   11篇
  2008年   7篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   4篇
  1999年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
1.
Abstract

Polyvinyl alcohol and egg white bionanocomposite hydrogels loaded with montmorillonite clay were fabricated by a freezing-thawing technique. The bionanocomposite hydrogels showed an exfoliated morphology and they had a more interconnected and dense network as compared with the clay-free sample. The montmorillonite layers acted as multifunctional crosslinkers and the bionanocomposite hydrogels had nanoscale, slit-shaped pores. The swelling ratios of the bionanocomposite hydrogels were increased either by decreasing the content of incorporated montmorillonite or by increasing the pH of the swelling medium. It was found that the bionanocomposite hydrogels having a higher content of montmorillonite exhibited a slightly slower drying process with a longer drying duration. Using the Ritger-Peppas model, it was shown that the swelling and drying mechanisms for all bionanocomposite hydrogels were non-Fickian diffusion. According to the Peppas-Sahlin model, it was found that the absorption of the swelling agent molecules during the swelling process and also the removal of water molecules during the drying process in the early stages of the processes occurred mostly due to their diffusion. At higher swelling or drying times, the contribution of the relaxation (for swelling) and shrinkage (for drying) of the polyvinyl alcohol polymeric chains and egg white protein chains was increased.  相似文献   
2.
A wide range of N‐arylated indoles were selectively synthesized through intermolecular C(aryl)? N bond formation from the corresponding aryl iodides and indoles through Ullmann‐type coupling reactions in the presence of a catalytic amount of Pd immobilized on amidoxime‐functionalized mesoporous SBA‐15 (SBA‐15/AO/Pd(0)) under mild reaction conditions. These cross‐coupled products were obtained in excellent yields under mild conditions at extremely low palladium loading (ca 0.3 mol%), and the heterogeneous catalyst can be readily recovered by simple filtration and reused seven times with loss in its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Here, we demonstrate the applicability of self-assembling linear-dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self-assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA-PAMAM LDBCs to serve as nanocarriers for applications in drug delivery.  相似文献   
4.
The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.  相似文献   
5.
This paper develops a green method for in situ decorated of palladium nanoparticles over Fe3O4 nanoparticles, by utilizing Strawberry fruit extract and ultrasound irradiations, with no use of any toxic reducing agent. The structure's characterization is represented via diverse analytical methods such as FT-IR, FE-SEM, TEM, WDX, ICP, EDS and XXPS. Catalytic efficiency of magnetic Fe3O4@Strawberry/Pd nanocatalyst is investigated in production of different biphenyls with good turnover frequencies (TOF) and turnover numbers (TON) through Suzuki coupling reactions. Furthermore, the catalyst could be recovered and reused 7 runs without considerable palladium leaching or alteration in its performance.  相似文献   
6.
In this work, an easily obtained procedure was successfully implemented to prepare novel palladium nanoparticles decorated on triethanolammonium chloride ionic liquid‐functionalized TiO2 nanoparticles [TiO2/IL‐Pd]. Different methods were carried out for characterizations of the synthesized nanocatalyst (HR‐TEM, XPS, XRD, FE‐SEM, EDX, FT‐IR and ICP). TiO2/IL‐Pd indicated good catalytic activity for the Suzuki–Miyaura cross‐coupling reaction of arylboronic acid with different aryl halides in aqueous media at ambient temperature. The recycled catalyst was investigated with ICP to amount of Pd leaching after 6 times that had diminished slightly, Thus, was confirmed that the nanocatalyst has a good sustainability for C–C Suzuki–Miyaura coupling reaction. The catalyst can be conveniently separated by filtration of the reaction mixture and reused for 6 times without significant loss of its activity. It supplies an environmentally benign alternative path to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   
7.
Gold nanoparticles have unique and excellent medical and nonmedical properties and application compared with other metallic nanoparticles. Recently, they have been used for the prevention, control, and treatment of bacterial and fungal diseases. In the recent study, fresh and clean leaves of Allium noeanum Reut. ex Regel leaves have been used for the synthesis of gold nanoparticles. Also, we evaluated the cytotoxicity, antioxidant, and antibacterial properties of HAuCl4, A. noeanum, and the synthesized nanoparticles (Au NPs). These nanoparticles were analyzed by FT‐IR, UV, XRD, EDS, FE‐SEM, and TEM tests. FTIR results offered antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to Au NPs. In TEM images revealed an average diameter of 10‐30 nm. At the beginning of biological experiments, DPPH free radical scavenging test was carried out to examine the antioxidant property. Also, in the bacterial part of this study, the concentration of HAuCl4, A. noeanum, and AuNPs with minimum dilution and no turbidity was considered MIC. To determine MBC, 60 μL of MIC and three preceding chambers were cultured on Muller Hinton Agar. The minimum concentration with no bacterial growth was considered MBC. Au NPs revealed excellent antioxidant potential against DPPH, non‐toxicity property against human umbilical vein endothelial cells, and antibacterial activities against Streptococcus pneumonia, Bacillus subtilis, Staphylococcus aureus, Staphylococcus saprophyticus, Salmonella typhimurium, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli O157:H7. These findings show that the inclusion of A. noeanum extract improves the solubility of Au NPs, which led to a notable enhancement in the antioxidant and antibacterial effects.  相似文献   
8.
Recently, metallic nanoparticles have been used for the treatment of several disorders, such as cancer. Indeed, finding the chemotherapeutic drug of nanoparticles is in researching the priority of both developed and developing countries. The present study confirms the ability of aqueous extract of Thymus vulgaris grown under in vitro condition for the biosynthesis of gold nanoparticles (AuNPs). Also, in this study, we indicated the antioxidant, cytotoxicity, and anti-acute myeloid leukemia properties of AuNPs compared to doxorubicin in a leukemic mouse model. The synthesized AuNPs were characterized using different techniques including X-ray diffraction (XRD), energy Dispersive X-ray Spectrometry (EDS), fourier-transform infrared spectroscopy (FT-IR) spectroscopy, ultraviolet–visible spectroscopy (UV–Vis.), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In vivo design, induction of acute myeloid leukemia was done by 7,12-Dimethylbenz[a]anthracene (DMBA) in 75 mice. Then, the animals were randomly divided into six subgroups, including control, untreated, doxorubicin, AuNPs, T. vulgaris, and HAuCl4. By quantitative real-time PCR, sphingosine-1-phosphate receptor-1 and sphingosine-1-phosphate receptor-5 mRNA expression in lymphocytes were significantly (P ≤ 0.01) raised by treating the leukemic mice with the AuNPs and doxorubicin. Also, AuNPs similar to doxorubicin, significantly (P ≤ 0.01) enhanced the anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and the platelet, lymphocyte, and red blood cell (RBC) parameters and reduced the pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY, and TNFα), and the total white blood cell (WBC), blast, monocyte, neutrophil, eosinophil, and basophil counts as compared to the untreated mice. In vitro design, 2,2-diphenyl-1-picrylhydrazyl (DPPH) test revealed similar antioxidant potentials for doxorubicin and AuNPs. Furthermore, AuNPs similar to doxorubicin had low cell viability dose-dependently against 32D-FLT3-ITD, Human HL-60/vcr, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. Above results confirm the excellent antioxidant, cytotoxicity, and anti-acute myeloid leukemia effects of AuNPs compared to doxorubicin. After confirming these results in clinical trial studies, AuNPs can be used as a chemotherapeutic drug for the treatment of acute myeloid leukemia in human.  相似文献   
9.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   
10.
“Far UV-C” is an effective disinfection method that can be deployed in occupied areas. Commercially available Krypton Chloride (KrCl*) excimer lamps filtered to emit at 222 nm are effective in disinfecting pathogens and safe for human exposure up to an allowable threshold exposure, which is much longer than for conventional UV lamps emitting at 254 nm. Laboratory and controlled field testing of a filtered KrCl* excimer lamp for disinfection of a virus suspended in a thin film aqueous solution in an occupied office setting was conducted. Complete inactivation of almost 6 log (99.9999%) of Phi6 bacteriophage virus was achieved in ~20 min of exposure time in a field setting, equivalent to a dose of about 10 mJ cm−2. The Phi6 inactivation rate constant for the field test results were not statistically different from laboratory values (P > 0.05, paired t-test). When positioned at 1 m distance from possible human exposure, this device can be used safely for almost 4.5 h of continuous direct exposure without any acute or long-term adverse health effects. This study illustrates the applicability and deployment of Far UV-C for pathogen reduction and can help in decision making for implementation of Far UV-C for disinfection in human-occupied environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号