首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   2篇
化学   56篇
晶体学   8篇
物理学   7篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   9篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
排序方式: 共有71条查询结果,搜索用时 375 毫秒
1.
Yellowish crystals of K2[(UO2)As2O7] ( 1 ) have been synthesized by solid‐state reactions method. The structure of 1 [orthorhombic, Pmmn, a = 12.601(2), b = 13.242(2), c = 5.621(1) Å, V = 937.9(3) Å3, Z = 4] has been solved by direct methods and refined to R1 = 0.049, wR2 = 0.1060 for 1059 observed reflections. The structure of 1 is based upon [(UO2)As2O7]2? sheets formed by corner sharing between [UO6]6? distorted octahedra and [As2O7]4? polyarsenate groups. The K+ cations are either in eightfold or tenfold coordination and are located between the sheets. The topology of the uranyl arsenate sheet is related to silicate minerals of the melilite group and related synthetic silicate, aluminate and germanate compounds.  相似文献   
2.
A first amine-templated uranyl selenate based upon highly porous uranyl selenate nanotubules, (C4H12N)14[(UO2)10(SeO4)17(H2O)], has been prepared in the room-temperature reaction of uranyl nitrate, butylamine, and H2SeO4 in aqueous solution. The structure consists of nanometer-scale tubular [(UO2)10(SeO4)17(H2O)]14- units packed in a hexagonal-type fashion. The tubules have elliptical cross section with outer dimensions of 25 x 23 A = 2.5 x 2.3 nm. The internal free crystallographic diameter of the tubules is 12.6 A = 1.26 nm, which is comparable to the effective pore size in large-pore zeolites. This finding demonstrates the possibility of nanostructures for actinides in higher oxidation states and opens up a new area of research and exploration.  相似文献   
3.
4.
5.
The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M=Ca, Sr, Ba) containing framework‐forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner‐sharing (XeO6) and (NaO6) octahedra arranged in a three‐dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated XeVIII and SiIV exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that XeVIII can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.  相似文献   
6.
7.
Crystallography Reports - Microporous silicate tiettaite from the Khibiny alkaline massif (Kola Peninsula, Russia) has been studied using X-ray diffraction analysis, electron probe microanalysis,...  相似文献   
8.
Three new uranyl tungstates, α-, β-Cs(2)[(UO(2))(2)(W(2)O(9))], and Rb(6)[(UO(2))(7)(WO(5))(2)(W(3)O(13))O(2)], have been obtained by high temperature solid state reactions. All three compounds display novel structure topologies: α- and β-Cs(2)[(UO(2))(2)(W(2)O(9))] are based upon layers with a new topology that can be related to the uranophane topology; Rb(6)[(UO(2))(7)(WO(5))(2)(W(3)O(13))O(2)] is a rare example of a non-molecular inorganic phase with layers containing oxo-tungstate trimers. The structural relationship between α- and β-Cs(2)[(UO(2))(2)(W(2)O(9))] can be assigned to polytypism.  相似文献   
9.
Two novel isopropylamine‐templated uranyl chromates, [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] ( 1 ) and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)] ( 2 ) were prepared by hydrothermal method at 100 °C. The compounds were characterized by electron microprobe analysis and X‐ray diffraction crystal structure analysis [ 1 : trigonal, P31m, a = 9.646(4), c = 8.469(4) Å, V = 682.4(5) Å3; 2 : monoclinic, P21/c, a = 11.309(3), b = 11.465(3), c = 17.055(5) Å, β = 99.150(6)°, V = 2183.2(11) Å3]. The structure of 1 is based upon trimers of uranyl bipyramids interlinked by CrO4 tetrahedra to form [(UO2)3(CrO4)2O(OH)3]3– layers, whereas, in the structure of 2 , UO7 and UO6(H2O) pentagonal bipyramids are linked through CrO4 tetrahedra into the [(UO2)2(CrO4)3(H2O)]2– layers. The structures show many similarities to related uranyl selenate compounds, thus providing additional data on similarities and differences between uranyl sulfates, chromates, selenates, and molybdates.  相似文献   
10.
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号