首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   7篇
化学   222篇
晶体学   4篇
力学   9篇
数学   15篇
物理学   71篇
  2023年   1篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   6篇
  2018年   15篇
  2017年   9篇
  2016年   12篇
  2015年   10篇
  2014年   20篇
  2013年   28篇
  2012年   26篇
  2011年   26篇
  2010年   16篇
  2009年   12篇
  2008年   16篇
  2007年   9篇
  2006年   9篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   11篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1997年   1篇
  1995年   1篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1987年   3篇
  1986年   2篇
  1984年   6篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
1.
DNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami. These minicircles are 183 bp in length, constitute six individual single-stranded DNAs that are ligated to realize duplex interlocking, and adopt temporary base pairing of single strands for interlocking. To probe the DNA-protein interactions, restriction reactions were carried out on DNAs with different topologies such as free linear duplex or duplex constrained inside origami and free or topologically-interlocked minicircles. Except the free linear duplex, all tested structures were resistant to restriction digestion, indicating that the topological features of DNA, such as flexibility, curvature, and groove orientation, play a major role in DNA-protein interactions.  相似文献   
2.
3.
A new class of dibenzo[b,j][1,10]phenanthrolines has been prepared. The synthon acridones were achieved in very good yield by a one-pot reaction of 2-amino-5-chloro or 2′-chloro/flouro-substituted benzophenones with 1,2-cyclohexanedione in the presence of freshly prepared Eaton’s reagent (phosphorus pentoxide–methanesulfonic acid) without solvent, through Friedländer synthesis. Then these intermediates were reacted with 2-amino-3,5-dibromobenzaldehyde to afford 1,3-dibromo-10-chloro-8-aryl-6,7-dihydrodibenzo[b,j][1,10]phenanthroline. Also an one-pot reaction between 2?mol of 2-amino-5-chloro aryl benzophenones with 1?mol of 1,2-cyclohexanedione to get 3,10-dichloro-5,8-diaryl-6,7-dihydrodibenzo[b,j][1,10]phenanthroline has also been reported. The newly synthesized structures of the compounds were deduced by spectroscopic techniques.  相似文献   
4.
Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size calculated from the Debye–Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs spherical in shape with clusters (1–100 nm). The antibacterial activity of the NPs was tested against Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and showed antibacterial activity.  相似文献   
5.
We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 104 cfu.mL?1 and 103 cfu.mL?1, respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods.
The method uses silica coated magnetic nanoparticles immobilized with anti-Salmonella antibody for immunomagnetic separation of Salmonella from beverages followed by detection by multiplex PCR (mPCR) and real time PCR (qPCR). This methodology contributes to rapid screening and accurate detection of Salmonella contaminations in beverages.  相似文献   
6.
Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.  相似文献   
7.
Recognition-driven modification has been emerging as a novel approach to modifying biomolecular targets of interest site-specifically and efficiently. To this end, protein modular adaptors (MAs) are the ideal reaction model for recognition-driven modification of DNA as they consist of both a sequence-specific DNA-binding domain (DBD) and a self-ligating protein-tag. Coupling DNA recognition by DBD and the chemoselective reaction of the protein tag could provide a highly efficient sequence-specific reaction. However, combining an MA consisting of a reactive protein-tag and its substrate, for example, SNAP-tag and benzyl guanine (BG), revealed rather nonselective reaction with DNA. Therefore new substrates of SNAP-tag have been designed to realize sequence-selective rapid crosslinking reactions of MAs with SNAP-tag. The reactions of substrates with SNAP-tag were verified by kinetic analyses to enable the sequence-selective crosslinking reaction of MA. The new substrate enables the distinctive orthogonality of SNAP-tag against CLIP-tag to achieve orthogonal DNA-protein crosslinking by six unique MAs.  相似文献   
8.
Journal of Thermal Analysis and Calorimetry - In this work, considering the various practical concerns during storage, processing, handling and emission of flash powder used for making firecracker,...  相似文献   
9.
The multidentate ligand H2 L upon complexation with Zn (II) and Cd (II) provide a one‐dimensional polymeric networks. These coordination polymers (CPs) CP‐1 and CP‐2 containing Zn (II) and Cd (II) metals respectively are well characterized. The single crystal structural analysis confirms the formation of one‐dimensional coordination polymer with zigzag fashion in CP‐1 and ladder chain CP‐2 . Both the CPs are applied as catalysts to synthesize various cyclic carbonates from epoxides and carbon dioxide. The catalysts are giving better conversion under solvent‐free and additive‐free condition using 10 bar CO2 and 100 °C as optimized pressure and temperature. The detailed kinetic experiments suggesting the first order kinetics, the energy of activation (Ea) is calculated for this catalytic conversion.  相似文献   
10.
RNA interference-mediated silencing is an effective way of controlling white spot syndrome virus (WSSV). However, the effect of RNAi on the innate immune mechanism is not well understood. Prophenoloxidase (proPO) is an important component of the shrimp innate immunity. In the present study, nonspecific effect of two double-stranded (ds)RNA-expressing constructs, one targeting vp28 gene of WSSV (pCMV-VP28-LH) and another targeting green fluorescent protein (GFP) (pCMV-GFP-LH) on proPO2 gene expression, is investigated. mRNA expression levels of proPO2 in hemocytes of DNA construct-injected shrimp were estimated using real-time PCR with elongation factor 1-α as internal control. Empty vector (pcDNA)-injected shrimp were used as experimental control. In pCMV-VP28-LH-injected shrimp, proPO2 showed significant upregulation until 48 h post-injection (p.i.). Similarly, pCMV-GFP-LH-injected animals showed high levels of expression until 72 h p.i. WSSV-challenged animals, compared to pcDNA-injected control group, showed no significant change in expression of the gene until 24 h. However, an increased expression was noticed at 48 h p.i. Our results suggest that neither the plasmids nor the long hairpin RNA expressed by the constructs has any nonspecific silencing effect on the proPO2 expression. On the contrary, the consistent upregulation of proPO2 observed in shrimp injected with dsRNA at early time-points indicates the possibility of nonspecific protection against WSSV infection.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号