首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   18篇
  国内免费   2篇
化学   200篇
晶体学   3篇
力学   1篇
数学   9篇
物理学   59篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   8篇
  2020年   17篇
  2019年   17篇
  2018年   19篇
  2017年   24篇
  2016年   27篇
  2015年   12篇
  2014年   28篇
  2013年   31篇
  2012年   24篇
  2011年   20篇
  2010年   10篇
  2009年   8篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1975年   1篇
排序方式: 共有272条查询结果,搜索用时 234 毫秒
1.
We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d -glucosamine has been attached chemically to Cbz-protected l -phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the β-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l -leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.  相似文献   
2.
A rapid, simple and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method has been developed to quantify fenoprofen, a nonsteroidal anti-inflammatory drug in human plasma for a pharmacokinetic study in healthy subjects. Owing to high levels of protein binding, protein precipitation followed by solid-phase extraction was employed for the extraction of fenoprofen and fenoprofen-d3 (used as internal standard) from 200 μL human plasma. Separation was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using methanol−0.2% acetic acid in water (75:25, v/v) under isocratic elution. Electrospray ionization was operated in the negative mode for sample ionization. Ion transitions used for quantification in the selected reaction monitoring mode were m/z 241/197 and m/z 244/200 for fenoprofen and fenoprofen-d3, respectively. Under the optimized conditions, fenoprofen showed excellent linearity in the concentration range 0.02–20 μg/mL (r2 ≥ 0.9996), adequate sensitivity, favorable accuracy (96.4–103.7%) and precision (percentage coefficient of variation ≤4.3) with negligible matrix effect. The validated method was successfully applied to a pharmacokinetic study of fenoprofen in healthy subjects. The significant features of the method include higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   
3.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   
4.
An ecofriendly route has been investigated for the synthesis of 4-(4-nitro-phenyl)-2-phenyl-1,4-dihydro-benzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylic acid ethyl ester derivatives by one-pot, three-component condensation of ethyl benzoylacetate, aromatic aldehydes, and 2-amino benzimidazole using 260?mol% of citric acid as reaction mediator. Citric acid is an inexpensive, nontoxic, and green medium with smoothly activates the rate of reaction. The synthesized compounds were assessed for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37RV strain using the microplate alamar blue assay (MABA). The results indicate that among all the synthesized compound series, P-4 and P-9 compounds illustrate effective activity with a minimum inhibitory concentration of 25?µg/ml.  相似文献   
5.
m‐Cresol‐imprinted silica nanoparticles coated with N‐propylsilylmorpholine‐4‐carboxamide have been developed that contain specific pockets for the selective uptake of m‐cresol. Silica nanoparticles were synthesized by a sol–gel process followed by functionalization of their surface with N‐propylsilylmorpholine‐4‐carboxamide. The formation of m‐cresol‐imprinted silica nanoparticles was confirmed by UV‐Vis spectrophotometry, infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. Electron microscopic studies revealed the formation of monodispersed imprinted silica nanoparticles with spherical shape and an average size of 83 nm. The developed nanoparticles were filled in a syringe and used for the extraction of m‐cresol from aqueous samples followed by quantification using high‐performance liquid chromatography with diode array detection. Various adsorption experiments showed that developed m‐cresol‐imprinted silica nanoparticles exhibited a high adsorption capacity and selectivity and offered a fast kinetics for rebinding m‐cresol. The chromatographic quantification was achieved using mobile phase consisting of acetonitrile/water (70:30 v/v) at an isocratic flow rate of 1.0 mL/min using a reversed‐phase C18 column and detection at λmax = 275 nm. The limits of detection and quantification were 1.86 and 22.32 ng/mL, respectively, for the developed method. The percent recoveries ranged from 96.66–103.33% in the spiked samples. This combination of this nanotechnique with molecular imprinting was proved as a reliable, sensitive and selective method for determining the target from synthetic and real samples.  相似文献   
6.
Chemistry of Natural Compounds - (3E,7Z)-Tetradecadienyl acetate, the major sex pheromone component of the potato pest Symmetrischema tangolias (Gyen), was stereoselectively synthesized from the...  相似文献   
7.
Karolia  Priyanka  Tiwari  D. C.  Jain  Rajeev 《Ionics》2015,21(8):2355-2362
Ionics - A novel, simple, sensitive, and highly selective omeprazole sensor based on the synergistic effect of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) has been developed. The...  相似文献   
8.
The combination of acebrophylline (ABP), levocetirizine (LCZ) and pranlukast (PRN) is used to treat allergic rhinitis, asthma, hay‐fever and other conditions where patients experience difficulty in breathing. This study was carried out with the aim of developing and validating a reverse‐phase high‐performance liquid chromatographic bioanalytical method to simultaneously quantitate ABP, LCZ and PRN in rat plasma. The objective also includes determination of the pharmacokinetic interaction of these three drugs after administration via the oral route after individual and combination treatment in rat. Optimum resolution between the analytes was observed with a C18 Kinetex column (250 mm × 4.6 mm × 5 μm). The chromatography was performed in a gradient elution mode with a 1 mL/min flow rate. The calibration curves were linear over the concentration range of 100–1600 ng/mL. The intra‐ and inter‐day precision and accuracy were found to be within acceptable limits as specified in US Food and Drug Administration guideline for bioanalytical method validation. The analytes were stable on the bench‐top (8 h), after three freeze–thaw cycles, in the autosampler (8 h) and as a dry extract (?80°C for 48 h). The statistical results of the pharmacokinetic study in Sprague–Dawley rats showed a significant change in pharmacokinetic parameters for PRN upon co‐administration of the three drugs.  相似文献   
9.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   
10.
We recently reported a polymer‐coated magnetic nanoparticle (MNP) draw agent for the forward osmosis (FO) water desalination process. The water flux was found to increase when the polymer poly(sodium acrylate) (PSA) was anchored to the MNP surface as compared to the polymer (or polyelectrolyte solution) alone, due to the polymer chains being stretched out and most of the hydrophilic groups on the polymer contributing to water flux. We herein report the use of a secondary polymer poly(N‐isopropylacrylamide) PNIPAM to manipulate the PSA polymer conformation and influence inter‐ and intrachain interactions to enhance the efficiency of the FO draw agent. These PSA–PNIPAM‐coated MNPs generated a much higher water flux of ~11.66 LMH when compared to the 100 % PSA‐coated MNPs featuring a value of ~5.32 LMH under identical FO conditions. The osmotic pressure and water flux driven by the mixed polymer‐coated MNPs were found to be a strong function of the net polymer coverage on MNPs, that is, net available hydrophilic groups. Our new draw agent demonstrates potential for use in the water industry due to its improved efficiency and cost effectiveness as it uses only ~0.062 % (w/v) of the draw agent solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号