首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   17篇
晶体学   1篇
力学   2篇
物理学   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  1995年   2篇
  1993年   1篇
  1988年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The phase diagram of the system Ag4SSe-SnTe is studied by means of X-ray diffraction, differential thermal and metallographic analyses and measurements of the microhardness and the density of the material. This diagram is divided into two eutectic-type subdiagrams by the composition Ag4SSe·2SnTe. The unit-cell parameters of the intermediate phases 3Ag4SSe·SnTe (phase A) and -Ag4SSe·2SnTe (phase B) are determined as follows: for phase A: a=0.7851 nm, b=0.7196 nm, c=0.6296 nm, =101.32°, =85.90°, =111.36°; for phase B: a=0.3662 nm, b=0.3303 nm, c=0.3343 nm, =90.74°, =108.94°, =91.91°. The phase Ag4SSe·2SnTe melts congruently at 615°C and a polymorphic transition of the phase takes place at T - =110°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
2.
The phase diagram of the system Ag4SSe–As2Se3 is studied by means of X-ray diffraction, differential thermal analyses and measurements of the microhardness and the density of the materials. The unit-cell parameters of the intermediate phases 3Ag4SSe·As2Se3 (phase A) and Ag4SSe·2As2Se3 (phase B) are determined as follows for phase A: a=4.495 Å, b=3.990 Å, c=4.042 Å, α=89.05°, β=108.98°, γ=92.93°; for phase B: a=4.463 Å, b=4.136 Å, c=3.752 Å, α=118.60°, β=104.46°, γ=83.14°. The phase 3Ag4SSe·As2Se3 and Ag4SSe·2As2Se3 have a polymorphic transition α?β consequently at 105 and 120°C. The phase A melts incongruently at 390°C and phase B congruently at the same temperature.  相似文献   
3.
4.
Bi-peroxotitanate was synthesized by a peroxo method and after thermal decomposition Bi2Ti2O7 was obtained. DTA, TG and DSC curves of Bi2[Ti2(O2)4(OH)6]5H2O were recorded and used to determine isothermal conditions suitable for obtaining the intermediate samples corresponding to the phases observed during the thermal decomposition. The samples were identified by quantitative analysis, IR spectroscopy and X-ray analysis. The experimental results were used to propose a mechanism of thermal decomposition of the investigated compound to a nanosized Bi2Ti2O7. The optimum conditions were also determined for obtaining Bi2Ti2O7, which is applicable for piezosensors.  相似文献   
5.
Neodymium(III) peroxotitanate is used as a precursor for obtaining Nd2TiO5. The last one possesses numerous valuable electrophysical properties. TiCl4, Nd(NO3)3·6H2O and H2O2 in mol ratio 1:2:10 were used as starting materials. The reaction ambience was alkalized to pH = 9 with a solution of NH3. The obtained neodymium(III) peroxotitanate and intermediate compounds of the isothermal heating were proved by the help of quantitative analysis and infrared spectroscopy (IRS). It has Nd4[Ti2(O2)4(OH)12]·7H2O composition. The absorption band observed in IRS at 831 cm?1 relates to a triangular bonding of the peroxo group of Ti, at 1062 cm?1—terminal groups Ti–OH and at 1491 and 1384 cm?1—the bridging OH?-groups Ti–O(H)–Ti. Nd2TiO5 was obtained by thermal decomposition of neodymium(III) peroxotitanate. The isothermal conditions for decomposition were determined on the base of differential thermal analysis, thermogravimetric and differential scanning calorimetry results in the temperature range of 20–1000 °C. The mechanism of thermal decomposition of Nd4[Ti2(O2)4(OH)12]·7H2O to Nd2TiO5 was studied. In the temperature range of 20–208 °C, a simultaneous decomposition of the peroxo groups by the separation of oxygen and hydrate water is conducted and Nd4[Ti2O4(OH)12] is obtained. From 208 to 390 °C, the terminal OH?-groups are separated and Nd4[Ti2O7(OH)6] is formed. In the range of 390–824 °C, the bridging OH?-groups are completely decomposed to Nd2TiO5. The optimal conditions for obtaining nanocrystalline Nd2TiO5 are 900 °C for 6 h and 20–80 nm.  相似文献   
6.
Three-dimensional (3D) reconstructions of the two 8.4 MDa Rapana thomasiana hemocyanin isoforms, RtH1 and RtH2, have been obtained by cryoelectron microscopy of molecules embedded in vitreous ice and single particle image processing. The final 3D structures of the RtH1 and RtH2 didecamers at 19 A and 16 A resolution, respectively, are very similar to earlier reconstructions of gastropodan hemocyanins, revealing structural features such as the obliquely oriented subunits, the five- and two-fold symmetrical axes. Three new interactions are defined; two of them connecting the arch and the wall while the third is formed between the collar and the wall. The collar-wall connection and one of the arch-wall connections are positioned between two individual subunit dimers, while the second arch-wall connection is located between two subunits within the subunit dimer. All three interactions establish connections to the first tier of the wall. Furthermore, for each interaction we have allocated two first tier functional units most likely involved in forming the connections.  相似文献   
7.
The phase diagram of the system CdI2-Ag2Se is studied by means of X-ray diffraction, differential thermal analysis and measurements of the density of the material. The unit cell parameters of the intermediate phase 2CdI2·3Ag2Se were determined a = 0.6387 Å, b = 4.311 Å, c = 4.044 Å; α = 113.72°, β = 90.27° and γ = 94.85°. The intermediate phase 2CdI2·3Ag2Se has a polymorphic transition at 125 °C. It melts incongruently at 660 °C.  相似文献   
8.
TG, DTA and DSC curves of Cd2[Ti2(O2)2O(OH)6]·H2O were recorded and used to determine the isothermal conditions suitable for obtaining the intermediate samples corresponding to the phases observed during the thermal decomposition. The samples were identified by quantitative analysis, IR spectroscopy and X-ray analysis. The experimental results were used to propose a mechanism of thermal decomposition of the investigated compound to CdTiO3. The optimum conditions were also determined for obtaining CdTiO3 with well-defined crystallinity.  相似文献   
9.
Potassium peroxotitanate was synthesized by the peroxo method. During the thermal decomposition K2Ti2O5 can be obtained. The isothermal conditions for decomposition of K2[Ti2(O2)2(OH)6]·3H2O were determined on the base of DTA, TG and DSC results. DTA and TG curves were recorded in the temperature range 20 and 900°C at a heating rate of 10°C min–1. The obtained intermediate compounds were characterized by means of quantitative analysis and IR spectroscopy. The mechanism of thermal decomposition of K2[Ti2(O2)2(OH)6]·3H2O to K2Ti2O5 was studied. The optimal conditions for obtaining K2Ti2O5 were determined (770°C for 10 h).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号