首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   2篇
化学   84篇
晶体学   1篇
物理学   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
排序方式: 共有86条查询结果,搜索用时 46 毫秒
1.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   
2.
The significance of the quantum-mechanical–molecular-mechanical (QM/MM) method in modeling chemical transformations at the active sites of cholinesterases is discussed. Diverse versions of the QM/MM approach are applied to understand the molecular mechanisms of the reactivation reaction of butyrylcholinesterase phosphorylated by the catalytic serine residue.  相似文献   
3.
4.
A three-dimensional, all-atom structure of the enzyme-substrate complex of the phosphodiesterase catalytic domain with diguanosine monophosphate was constructed based on the results of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations.  相似文献   
5.
A three-dimensional model of subunit structure for the LH1 light-harvesting complex of the photosynthetic reaction center of Thermochromatium tepidum bacterium is constructed on the basis of the primary sequence of amino acid residues of the α-and β-polypeptide helixes; the specific binding site of the calcium ion is suggested.  相似文献   
6.
Ab initio approaches of quantum chemistry, including the fragment molecular orbital (FMO) method, as well as the multiconfigurational quasidegenerate perturbation theory (XMCQDPT2) and time-dependent density functional theory (TD DFT) were applied to compute optical spectra of a polyene dye molecule on the surface of titanium dioxide.  相似文献   
7.
The results of modeling of the complete catalytic cycle of aspartoacylase-catalyzed N-acetylaspartate hydrolysis by the combined quantum mechanics/molecular mechanics method and with the use of umbrella sampling replica-exchange molecular dynamics simulations are reported. It has been shown that the decrease in the high-energy barriers of rate-limiting stages is achieved through the preceding equilibrium stages, such as proton transfer and conformational changes. General features of the catalytic behavior of enzymes have been formulated.  相似文献   
8.
A complete cycle of chemical transformations for the serine protease prototype reaction is modeled following calculations with the flexible effective fragment quantum mechanical/molecular mechanical (QM/MM) method. The initial molecular model is based on the crystal structure of the trypsin–bovine pancreatic trypsin inhibitor complex including all atoms of the enzyme within approximately 15–18 Å of the oxygen center O of the catalytic serine residue. Several selections of the QM/MM partitioning are considered. Fractions of the side chains of the residues from the catalytic triad (serine, histidine and aspartic acid) and a central part of a model substrate around the C–N bond to be cleaved are included into the QM subsystem. The remaining part, or the MM subsystem, is represented by flexible chains of small effective fragments, whose potentials explicitly contribute to the Hamiltonian of the QM part, but the corresponding fragment–fragment interactions are described by the MM force fields. The QM/MM boundaries are extended over the C–C bonds of the peptides assigned to the QM subsystem in the enzyme, C–C and C–N bonds in model substrates. Multiple geometry optimizations have been performed by using the RHF/6-31G method in the QM part and OPLSAA or AMBER sets of MM parameters, resulting in a series of stationary points on the complex potential-energy surfaces. All structures generally accepted for the serine protease catalytic cycle have been located. Energies at the stationary points found have been recomputed at the MP2/6-31+G* level for the QM part in the protein environment. Structural changes along the reaction path are analyzed with special attention to hydrogen-bonding networks. In the case of a model substrate selected as a short peptide CH3(NHCO-CH2)2 – HN–CO–(CH2–NHCO)CH3 the computed energy profile for the acylation step shows too high activation energy barriers. The energetics of this rate-limiting step is considerably improved, if more realistic model for the substrate is considered, following the motifs of the ThrI11–GlyI12–ProI13-–CysI14–LysI15–AlaI16–ArgI17–IleI18–IleI19 sequence of the bovine pancreatic trypsin inhibitor.  相似文献   
9.
The structures, spectra, and electron density distributions of the alumophenylsiloxane (APS) complex and its fragments have been calculated using semiempirical (AM1) and ab initio (SCF/3-21G and SCF/6-31G*) quantum chemical approximations. It has been shown that the local properties of the central fragment of alumophenylsiloxane, which is a slightly distorted tetrahedron AlO4, are described with the (LiO)2AlOBe(OH) cluster. M. V. Lomonosov Moscow State University. I. M. Gubkin State Academy of Oil and Gas. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 3, pp. 410–417, May–June, 1995. Translated by I. Izvekova  相似文献   
10.
IR spectra of 24 structural isomers of (HF) n (n=4–8) clusters were calculated in the framework of semiempirical theory of polyatomic molecule vibrations. Based on the results obtained and available experimental data it is proposed that (HF) n associates comprising 3–5-membered cycles with attached monomeric HF units are present in molecular beams and gas phase.Ab initio calculations performed by the SCF method show the existence of local minima corresponding to such structures on the potential energy surface of (HF) n clusters (n=4–6). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 435–443, March, 1997.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号