首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   11篇
  国内免费   1篇
化学   332篇
晶体学   9篇
力学   13篇
数学   73篇
物理学   140篇
  2023年   6篇
  2022年   8篇
  2021年   14篇
  2020年   4篇
  2019年   12篇
  2018年   15篇
  2017年   17篇
  2016年   5篇
  2015年   10篇
  2014年   21篇
  2013年   25篇
  2012年   28篇
  2011年   22篇
  2010年   19篇
  2009年   12篇
  2008年   22篇
  2007年   18篇
  2006年   17篇
  2005年   24篇
  2004年   24篇
  2003年   18篇
  2002年   20篇
  2001年   10篇
  2000年   9篇
  1999年   4篇
  1997年   4篇
  1996年   11篇
  1995年   6篇
  1993年   8篇
  1992年   9篇
  1991年   6篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   9篇
  1984年   10篇
  1983年   10篇
  1982年   4篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1977年   11篇
  1976年   6篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1969年   3篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
1.
Metabolic glycan engineering (MGE) coupled with nitroxide spin-labeling (SL) was utilized to investigate the heterogeneous environment of cell surface glycans in select cancer and normal cells. This approach exploited the incorporation of azides into cell surface glycans followed by a click reaction with a new nitroxide spin label. Both sialic acid and N-acetylglucosamine (GlcNAc) were targeted for spin labelling. Although each of these moieties experiences a diverse and heterogeneous glycan environment, their EPR spectra and hence mobility are both characterized as a linear combination of two distinct spectra where one component reflects a highly mobile or uncrowded micro-environment with the second component reflecting more restricted motion, reflective of increased crowding and packing within the glycocalyx. What differs among the spectra of the targeted glycans is the relative percentage of each component, with sialic acid moieties experiencing on average an ∼80% less crowded environment, where conversely GlcNAc/GalNAz labeled sites reported on average a ∼50% more crowded environment. These distinct environments are consistent with the organization of sugar moieties within cellular glycans where some residues occur close to the cell membrane/protein backbone (i.e. more restricted) and others are more terminal in the glycan (i.e. more mobile). Strikingly, different cell lines displayed varied relative populations of these two components, suggesting distinctive glycan packing, organization, and composition of different cells. This work demonstrates the capability of SDSL EPR to be a broadly useful tool for studying glycans on cells, and interpretation of the results provides insights for distinguishing the differences and changes in the local organization and heterogeneity of the cellular glycocalyx.

Metabolic glycan engineering (MGE) coupled with nitroxide spin-labeling (SL) was utilized to investigate the heterogeneous environment of cell surface glycans in select cancer and normal cells.  相似文献   
2.
Journal of Solid State Electrochemistry - Herein, we report the synthesis of ZnO nanorod films onto FTO (fluorine-doped tin oxide) substrates using the solution-processed electrodeposition method....  相似文献   
3.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Nanometer-sized grain structures that exhibit a large number of grain boundaries on the surface of a bulk material demonstrate excellent properties relative to their coarse-grained (CG) equivalents. Surface modification using surface mechanical attrition treatment (SMAT) is an option that cab be used to tailor the corrosion, tribological, mechanical, and chemical reaction properties of a surface. SMAT is an effective route to create the nanostructured surface layer. The SMAT process has unique advantages compared with the other coating and deposition techniques for surface nanocrystallization. For example, SMAT does not alter the chemical composition of the nanocrystalline surface layer in the matrix. In addition, SMAT has been demonstrated to activate the material surface layer by surface modification and enhance the atomic diffusivity. This article presents a review of the advantages offered by the SMAT technique for the creation of high performance surface layers. The influence of the created nanocrystalline layer on mechanical, physical, and chemical properties is assessed. Developments and the current status of the surface nanolayer that are formed are evaluated from a physical approach. Finally, prospects for the future development of grain refinement on the surface of a material matrix and potential applications are presented.  相似文献   
5.
Absolute rate constants for hydroxyl radical, azide radical, and hydrated electron reactions with a sulfa drug 4,4'‐diamino diphenyl sulfone (dapsone) in water have been evaluated using electron pulse radiolysis technique. Absolute rate constants for hydroxyl radical and azide radical were determined as (8.4 ± 0.3) × 109 and (5.6 ± 0.5) × 109 M?1 s?1, respectively. The reduction of dapsone with the hydrated electron occurred with rate constant of (9.2 ± 0.1) × 109 M?1 s?1. Hydroxyl radical reactions result in the synchronous formation of adduct as well as anilino radical. The interesting observation is that the yield of the anilino radical increases with increase in pH. Contrary to this, the yield of the adduct decreases with pH. We propose that hydroxyl radical adds predominantly to the aniline. In contrast, the reaction of azide radical with the dapsone suggests that the reaction occurs at the –NH2 moiety of the aniline ring. The free radical electron transfer from dapsone to parent radical cation of non‐polar solvent also results in the formation of anilino radical only suggesting that the radical cation of dapsone has a short lifetime. The reaction of hydrated electrons with the dapsone suggests that the reaction occurs at different reaction site. The experimental results supported by theoretical calculations of this study provide fundamental mechanistic parameters that probably decide the fate of the radical cation of aniline derivatives. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
H. Mohit 《Composite Interfaces》2018,25(5-7):629-667
Abstract

Plant cellulose fiber polymer composites are readily applied in wide range of applications due to ecological and economical alternative to traditional materials. The considerable amount of residues and organic wastes from agricultural process are still employed as lower energy resource. Organic materials are generally disposed in composting, landfilling or anaerobic digestion. The utilization of these wastes in plant fiber composites shows significant alternative and environmental friendly in nature. The production of plant cellulose fiber composite with higher structural properties is optimized by interfacial bonding between polymer and reinforced fiber. The interface plays a vital role in regulating mechanical properties by distributing bonds and stress transferring, which is one of least understood element of composites. This paper presents the comprehensive review of fiber structures, different modification techniques to reduce the incompatibility between matrix and fiber, assessment of structure interface and bonding, clarifies the interfacial adhesion of cellulose fiber composites.  相似文献   
7.
8.
At the intersection of nonlinear and combinatorial optimization, quadratic programming has attracted significant interest over the past several decades. A variety of relaxations for quadratically constrained quadratic programming (QCQP) can be formulated as semidefinite programs (SDPs). The primary purpose of this paper is to present a systematic comparison of SDP relaxations for QCQP. Using theoretical analysis, it is shown that the recently developed doubly nonnegative relaxation is equivalent to the Shor relaxation, when the latter is enhanced with a partial first-order relaxation-linearization technique. These two relaxations are shown to theoretically dominate six other SDP relaxations. A computational comparison reveals that the two dominant relaxations require three orders of magnitude more computational time than the weaker relaxations, while providing relaxation gaps averaging 3% as opposed to gaps of up to 19% for weaker relaxations, on 700 randomly generated problems with up to 60 variables. An SDP relaxation derived from Lagrangian relaxation, after the addition of redundant nonlinear constraints to the primal, achieves gaps averaging 13% in a few CPU seconds.  相似文献   
9.
Poly(N-vinyl-2-pyrrolidone) (PVP) and gelatin protected silver nanostructures are prepared in formamide by simple chemical route. Both PVP and gelatin stabilized silver nanoparticles in formamide lead to the formation of nanostructures of various definite geometric shapes and sizes. The effect of anisotropy on the surface plasmon absorption band is analyzed by monitoring the UV-Visible absorption spectra of gelatin stabilized silver nanoparticles. The particles were characterized by UV-Visible absorption spectra and TEM.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号