首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
化学   22篇
力学   1篇
数学   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
排序方式: 共有24条查询结果,搜索用时 187 毫秒
1.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   
2.
<正>Five new optically active polyamides(PAs) 6a-6e were prepared by direct polycondensation reaction of 2-(1,3- isoindolinedione-2-yl)-glutaric acid 4 as a new chiral diacid with various aromatic diamines 5a-5e in a medium consisting of triphenyl phosphite(TPP),calcium chloride,pyridine(Py) and N-methyl-2-pyrrolidone(NMP).The polycondensation reaction produced a series of polyamids 6a-6e in quantitative yields with inherent viscosities of 0.26-0.39 dL/g.The resulting polymers were fully characterized by means of ~1H-NMR,FT-IR spectroscopy,elemental analysis,inherent viscosity and specific rotation.Thermal properties of these polymers were investigated using thermal gravimetric analysis (TGA) and differential thermal gravimetry(DTG).Phthalimide rings as a bulky pendent group in the polymer chains disturb the interchain and intrachain interactions and make these PAs readily soluble in polar,aprotic solvents such as N,N-dimethyl acetamide(DMAc),N,N-dimethyl formamide(DMF),dimethyl sulfoxide(DMSO),N-methyl-2-pyrrolidone(NMP) and sulfuric acid.  相似文献   
3.
In this study a new series of magnetic and heat resistant nanocomposites were prepared based on a highly soluble poly(imide-ether) (PIE) reinforced with two different types of magnetic nanoparticles via a solution intercalation technique. New PIE with good solubility and desired molar mass containing bulky xanthene rings and amide groups in the side chains was synthesized via thermal cyclization of the poly(amic acid) precursor, obtained from the reaction of a new diamine derived from 9H-xanthene and 4,4′-oxydiphthalic dianhydride (ODPA). Improved solubility was attributed to the presence of xanthene group and flexible ether linkage in the polyimide backbones that reduce the chain-chain interaction and enhance solubility by penetrating solvent molecules into the polyimide chains. Fe3O4 nanoparticles (MNPs) which synthesized from chemical co-precipitation route were coated with silica (SiO2), sequentially with (3-aminopropyl)triethoxysilane and poly-melamine-terephthaldehyde (MNPs-PMT), and then separately dispersed in the poly(amic acid) solutions and thermally imidized to form PIE/Fe3O4 and PIE/MNPs-PMT nanocomposites. The nanostructures and properties of the resultant materials were investigated using FTIR spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties of the nanocomposites were strongly related to the dispersion and interaction between the nanoparticles and PIE matrix. The thermogravimetric analysis (TGA) results showed that the addition of MNPs-PMT nanoparticles resulted in a substantial increase in the thermal stability of the corresponding PIEN. The temperature at 10% weight loss (T10) was increased from 416 °C to 428 °C for PIEN containing 3 wt% MNPs-PMT as compared to neat PIE, as well the char yield enhanced. Furthermore, the MNPs-PMT nanoparticles had better dispersion in the polymer matrix due to the strong intermolecular hydrogen bond interactions between the NH and C=N groups of surface-modified nanoparticles and the PIE matrix than the uncoated Fe3O4 nanoparticles, and exhibited a better intercalated morphology and improved thermal properties. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature.  相似文献   
4.
Six novel poly(amide‐imide)s PAIs 5a‐f were synthesized through the direct polycondensation reaction of six chiral N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f with bis(3‐amino phenyl) phenyl phosphine oxide 4 in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), triphenyl phosphite (TPP), calcium chloride (CaCl2) and pyridine. The polymerization reaction produced a series of flame‐retardant and thermally stable poly(amide‐imide)s 5a‐f with high yield and good inherent viscosity of 0.39–0.83 dLg?1. The resultant polymers were fully characterized by means of FTIR, 1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Thermal properties and flame retardant behavior of the PAIs 5a‐f were investigated using thermal gravimetric analysis (TGA and DTG) and limited oxygen index (LOI). Data obtained by thermal analysis (TGA and DTG) revealed that these polymers show good thermal stability. Furthermore, high char yields in TGA and good LOI values indicated that resultant polymers exhibited good flame retardant properties. N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f were prepared in quantitative yields by the condensation reaction of bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride 1 with L‐alanine 2a , L‐valine 2b , L‐leucine 2c , L‐isoleucine 2d , L‐phenyl alanine 2e and L‐2‐aminobutyric acid 2f in acetic acid solution. These polymers can be potentially utilized in flame retardant thermoplastic materials.  相似文献   
5.
In this paper we study the operators defined between n-modular spaces. In particular, compact operators are studied and then given some applications to fixed points.  相似文献   
6.
Hyperbranched polyethylenimine(PEI)-functionalized mesoporous silica(MCM@PEI) was synthesized and used to produce poly(vinyl alcohol)(PVA) nanocomposites.The modified nanofiller was characterized with infrared spectroscopy,thermogravimetric analysis,X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and N2 adsorption.When compared with pure mesoporous silica(MCM),the MCM@PEI nanoparticles exhibited better dispersion in the PVA matrix.The effects of MCM@PEI on the thermal and flame properties of PVA nanocomposites were also studied.Improvement in the thermal properties was confirmed by enhanced thermal stability and char yield.Incorporation of MCM@PEI in PVA led to a significant drop in the heat release rate and the total heat release.  相似文献   
7.
In this study a new series of magnetic and heat resistant nanocomposites were prepared based on a highly soluble poly(imideether)(PIE) reinforced with two different types of magnetic nanoparticles via a solution intercalation technique. New PIE with good solubility and desired molar mass containing bulky xanthene rings and amide groups in the side chains was synthesized via thermal cyclization of the poly(amic acid) precursor, obtained from the reaction of a new diamine derived from 9 H-xanthene and 4,4′-oxydiphthalic dianhydride(ODPA). Improved solubility was attributed to the presence of xanthene group and flexible ether linkage in the polyimide backbones that reduce the chain-chain interaction and enhance solubility by penetrating solvent molecules into the polyimide chains. Fe3 O4 nanoparticles(MNPs) which synthesized from chemical co-precipitation route were coated with silica(Si O2), sequentially with(3-aminopropyl)triethoxysilane and poly-melamine-terephthaldehyde(MNPs-PMT), and then separately dispersed in the poly(amic acid) solutions and thermally imidized to form PIE/Fe3 O4 and PIE/MNPs-PMT nanocomposites. The nanostructures and properties of the resultant materials were investigated using FTIR spectroscopy, X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), vibrating sample magnetometer(VSM), thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC). The properties of the nanocomposites were strongly related to the dispersion and interaction between the nanoparticles and PIE matrix. The thermogravimetric analysis(TGA) results showed that the addition of MNPs-PMT nanoparticles resulted in a substantial increase in the thermal stability of the corresponding PIEN. The temperature at 10% weight loss(T10) was increased from 416 °C to 428 °C for PIEN containing 3 wt% MNPs-PMT as compared to neat PIE, as well the char yield enhanced. Furthermore, the MNPs-PMT nanoparticles had better dispersion in the polymer matrix due to the strong intermolecular hydrogen bond interactions between the NH and C=N groups of surface-modified nanoparticles and the PIE matrix than the uncoated Fe3 O4 nanoparticles, and exhibited a better intercalated morphology and improved thermal properties. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature.  相似文献   
8.
New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution intercalation technique in N-methyl-2-pyrrolidone. High-molecular-weight amide chains were synthesized from 4,4′-diaminodiphenyl ether and 4-phenylenediacrylic acid in N-methyl-2-pyrrolidone. The resulting nanocomposite films containing 5–20 wt.% of organoclay (Cloisite® 20A) were characterized for FT-IR, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.  相似文献   
9.
The use of cellulose and starch derivatives that bear amino or quaternary ammonium moieties is steadily increasing, and the applications in industry are continuing to grow. These promising products are routinely used in cosmetic and paper‐making industries. This article provides an overview of strategies available to chemists for designing the syntheses of such compounds. The review provides a brief historical perspective on synthesis and describes recent developments that have enabled chemists to enhance their synthesis productivity. However, the graft polymerization techniques are far from the scope of this paper and will be noted in a few words only. In addition to the structural and synthetic aspects, applications of these derivatives are discussed in brief. We have divided this article in two parts mainly because of the vastness of the subject and limited space available. The first part of which reviews the advances in the synthesis of basic and cationic cellulose derivatives having amino or quaternary ammonium moieties and the second part of which considers starch ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Polypropylene (PP), due to its chemical stability, is considered one of the main responsible of the increasing amount of plastic wastes on earth. To overcome this problem and to reduce the dependence of oil feedstocks, the use of lignocellulosics as fillers or reinforcements in thermoplastic materials has been increasing enormously in the last decades. In the present work, Liquid Wood (a mixture of cellulose, hemp, fax and lignin) was used to prepare, by mechanical mixing followed by thermal extrusion, blends of various PP/Liquid Wood ratios. Differential scanning calorimetry and thermogravimetric analysis experiments were performed in order to verify whether and how much the composition of the blends affects the thermal properties of the obtained compounds. Both calorimetric and thermogravimetric results indicate that the application of PP as a matrix does not limit the processing temperature of Liquid Wood, which may lead to a perfect marketable composite from these components. The addition of Liquid Wood also resulted in enhanced mechanical properties for the PP/Liquid Wood blends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号