首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3902篇
  免费   223篇
  国内免费   16篇
化学   3196篇
晶体学   15篇
力学   66篇
数学   418篇
物理学   446篇
  2023年   42篇
  2022年   28篇
  2021年   122篇
  2020年   141篇
  2019年   120篇
  2018年   59篇
  2017年   55篇
  2016年   167篇
  2015年   171篇
  2014年   161篇
  2013年   234篇
  2012年   332篇
  2011年   371篇
  2010年   206篇
  2009年   170篇
  2008年   288篇
  2007年   251篇
  2006年   249篇
  2005年   179篇
  2004年   181篇
  2003年   144篇
  2002年   102篇
  2001年   22篇
  2000年   25篇
  1999年   20篇
  1998年   16篇
  1997年   16篇
  1996年   22篇
  1995年   20篇
  1994年   14篇
  1993年   4篇
  1991年   6篇
  1990年   6篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1986年   10篇
  1985年   19篇
  1984年   18篇
  1983年   16篇
  1982年   17篇
  1981年   18篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   13篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
排序方式: 共有4141条查询结果,搜索用时 15 毫秒
1.
According to the Food and Agriculture Organization of the United Nations, approximately 1.3 billion tons of food is wasted each year, equivalent to approximately one-third of world production. Agri-food wastes are the source of proteins, carbohydrates, lipids, and other essential minerals that have been exploited for value-added products by the development of biorefineries and sustainable business as important elements of circular economies. The innovation and materialization of these types of processes, including the use of disruptive technologies on microbial bioconversion and enzyme technology, such as nanotechnology, metabolic engineering, and multi-omics platforms, increase the perspectives on the waste valorization process. Lignocellulolytic enzymes, pectinases, and proteases are mainly used as catalyzers on agri-food waste treatment, and their production in house might be the trend in near future for agro-industrial countries. Another way to transform the agri-food wastes is via aerobic or anaerobic microbial process from fungal or bacterial cultures; these processes are the key to produce waste enzymes.  相似文献   
2.
The identification of emergent structures in complex dynamical systems is a formidable challenge. We propose a computationally efficient methodology to address such a challenge, based on modeling the state of the system as a set of random variables. Specifically, we present a sieving algorithm to navigate the huge space of all subsets of variables and compare them in terms of a simple index that can be computed without resorting to simulations. We obtain such a simple index by studying the asymptotic distribution of an information-theoretic measure of coordination among variables, when there is no coordination at all, which allows us to fairly compare subsets of variables having different cardinalities. We show that increasing the number of observations allows the identification of larger and larger subsets. As an example of relevant application, we make use of a paradigmatic case regarding the identification of groups in autocatalytic sets of reactions, a chemical situation related to the origin of life problem.  相似文献   
3.
4.
A flexible skin‐mounted microfluidic potentiometric device for simultaneous electrochemical monitoring of sodium and potassium in sweat is presented. The wearable device allows efficient natural sweat pumping to the potentiometric detection chamber, containing solid‐contact ion‐selective Na+ and K+ electrodes, during exercise activity. The fabricated microchip electrolyte‐sensing device displays good analytical performance and addresses sweat mixing and carry‐over issues of early epidermal potentiometric sensors. Such soft skin‐worn microchip platform integrates potentiometric measurement, microfluidic technologies with flexible electronics for real‐time wireless data transmission to mobile devices. The new fully integrated microfluidic electrolyte‐detection device paves the way for practical fitness and health monitoring applications.  相似文献   
5.
Despite the strong technological importance of lanthanide complexes, their formation processes are rarely investigated. This work is dedicated to determining the influence of synthesis parameters on the formation of [Ce(bipy)2(NO3)3] as well as Ce3+‐ and Tb3+‐substituted [La(bipy)2(NO3)3] (bipy = 2,2′‐bipyridine) complexes. To this end, we performed in situ luminescence measurements, synchrotron‐based X‐ray diffraction (XRD) analysis, infrared spectroscopy (IR), and measured pH value and/or ion conductivity during their synthesis process under real reaction conditions. For the [Ce(bipy)2(NO3)3] complex, the in situ luminescence measurements initially presented a broad emission band at 490 nm, assigned to the 5d→4f Ce3+ ions within the ethanolic solvation shell. Upon the addition of bipy, a red shift to 700 nm was observed. This shift was attributed to the changes in the environment of the Ce3+ ions, indicating their desolvation and incorporation into the [Ce(bipy)2(NO3)3] complex. The induction time was reduced from 8 to 3.5 min, by increasing the reactant concentration by threefold. In contrast, [La(bipy)2(NO3)3] crystallized within days instead of minutes, unless influenced by high Ce3+ and Tb3+ concentrations. Monitoring and controlling the influence of the reaction parameters on the structure of emissive complexes is important for the development of rational synthesis approaches and optimization of their structure‐related properties like luminescence.  相似文献   
6.
Isoforms of protein kinase Akt are involved in essential processes including cell proliferation, survival, and metabolism. However, their individual roles in health and disease have not been thoroughly evaluated. Thus, there is an urgent need for perturbation studies, preferably mediated by highly selective bioactive small molecules. Herein, we present a structure‐guided approach for the design of structurally diverse and pharmacologically beneficial covalent‐allosteric modifiers, which enabled an investigation of the isoform‐specific preferences and the important residues within the allosteric site of the different isoforms. The biochemical, cellular, and structural evaluations revealed interactions responsible for the selective binding profiles. The isoform‐selective covalent‐allosteric Akt inhibitors that emerged from this approach showed a conclusive structure–activity relationship and broke ground in the development of selective probes to delineate the isoform‐specific functions of Akt kinases.  相似文献   
7.
[Cp*Rh(κ3N,N′,P- L )][SbF6] (Cp*=C5Me5), bearing a guanidine-derived phosphano ligand L , behaves as a “dormant” frustrated Lewis pair and activates H2 and H2O in a reversible manner. When D2O is employed, a facile H/D exchange at the Cp* ring takes place through sequential C(sp3)−H bond activation.  相似文献   
8.
An analytical method for determining seleno‐methionine, methyl‐seleno‐cysteine, and seleno‐cystine in wheat bran was developed and validated. Four different extraction procedures were evaluated to simultaneously extract endogenous free and conjugated seleno‐amino acids in wheat bran in order to select the best extraction protocol in terms of seleno amino acid quantitation. The extracted samples were subjected to a clean‐up by a reversed phase/strong cation exchange solid‐phase extraction and analyzed by chiral hydrophilic interaction liquid chromatography‐tandem mass spectrometry. The optimized extraction protocol was employed to validate the methodology. Process efficiency ranged from 58 to 112% and trueness from 73 to 98%. Limit of detection and limit of quantification were lower than 1 ng/g. Four wheat bran samples were analyzed for both total Se and single seleno‐amino acids determination. The results showed that Se‐ seleno‐methyl‐l selenocysteine was the major seleno‐amino acid in wheat bran while seleno‐methionine and seleno‐cysteine were both minor species.  相似文献   
9.
This study investigates the influence of an increasingly hydrophobic backbone of multivalent glycomimetics based on sequence‐defined oligo(amidoamines) on their resulting affinity toward bacterial lectins. Glycomacromolecules are obtained by stepwise assembly of tailor‐made building blocks on solid support, using both hydrophobic aliphatic and aromatic building blocks to enable a gradual change in hydrophobicity of the backbone. Their binding behavior toward model lectin Concanavalin A (ConA) is evaluated using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) showing higher affinities for glycomacromolecules with higher content of hydrophobic and aromatic moieties in the backbone. Finally, glycomacromolecules are tested in a bacterial adhesion inhibition study against Escherichia coli where more hydrophobic backbones yield higher inhibitory potentials most likely due to additional secondary interactions with hydrophobic regions of the protein receptor as well as a change in conformation exposing carbohydrate ligands for increased binding. Overall, the results highlight the influence and thereby importance of the polymer backbone itself on the resulting properties of polymeric biomimetics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号