首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   12篇
化学   366篇
晶体学   1篇
力学   2篇
数学   1篇
物理学   38篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   37篇
  2012年   23篇
  2011年   23篇
  2010年   10篇
  2009年   10篇
  2008年   13篇
  2007年   18篇
  2006年   19篇
  2005年   20篇
  2004年   20篇
  2003年   16篇
  2002年   9篇
  2001年   11篇
  2000年   3篇
  1996年   2篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   8篇
  1982年   2篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   18篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
  1969年   5篇
  1968年   7篇
  1967年   10篇
  1966年   3篇
  1965年   6篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
1.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
2.
Strategies for the formation of amide bonds, that is, one of the most basic and important transformations in organic synthesis, have so far focused predominantly on dehydration reactions. Herein, we report and demonstrate the practical utility of a novel decarboxylative amidation of α-ketoacids by using inexpensive tert-butyl hydroperoxide (TBHP), which is characterized by high yields, a broad substrate scope, mild reaction conditions, and a unique chemoselectivity. These features enable the synthesis of peptides from amino acid derived α-ketoacids under preservation of the stereochemical information.  相似文献   
3.
The development of a one‐step borylation of 1,3‐diaryloxybenzenes, yielding novel boron‐containing polycyclic aromatic compounds, is reported. The resulting boron‐containing compounds possess high singlet‐triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light‐emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one‐step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron‐fused benzo[6]helicene.  相似文献   
4.
Polyion complexes (b‐PICs) are prepared by mixing single‐ or double‐stranded oligo RNA (aniomer) with poly(ethylene glycol)‐b‐poly(l ‐lysine) (PEG‐PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21‐mer single‐stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21‐mer double‐stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge‐neutralized ionomer pair with a single PEG‐PLL chain, termed unit b‐PIC (uPIC), at low concentrations (<≈0.01 mg mL−1). Above the critical association concentration (≈0.01 mg mL−1), ssRNA b‐PICs form secondary associates, PIC micelles, with sizes up to 30–70 nm, while no such multimolecular assembly is observed for siRNA b‐PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association.

  相似文献   

5.
The reactions of thioamides with ortho-nitro-substituted iodonium ylides proceeded under mild conditions to give enaminones or thiazoles, depending on the iodonium ylide used. This protocol allowed the use of protic solvents, including aqueous solutions, and therefore coupling reactions with complex molecules such as peptides or steroids were possible. A mild and efficient method for the synthesis of various iodonium ylides was established. DFT calculations suggested that the halogen bonding between a thioamide and iodonium ylide was important in this chemoselective coupling reaction. The potential use of enaminones conjugated with pharmaceuticals as prodrugs was also demonstrated.  相似文献   
6.
A concise route for construction of the ACDE ring skeleton in calyciphylline A type alkaloids was developed using an intramolecular [5+2] cycloaddition reaction of an oxidopyrylium species bearing a tetrasubstituted olefin. Key to the success of this reaction was the combination of acid and base, which accelerated the construction of this skeleton containing a spiro ring and vicinal quaternary carbon centers. The resultant tricyclic ADE ring compound was converted to an ACDE ring model through C−H oxidation and an aza-Wittig reaction.  相似文献   
7.
Novel methods for the determination of inorganic oxyanions by electrospray (ES) ionization mass spectrometry have been developed using dehydration reactions between oxyanions and carboxylic acids at the ES interface. Twelve oxyanions (VO3?, CrO42?, MoO42?, WO42?, BO33?, SiO32?, SiO44?, AsO44?, AsO2?, SeO42?, SeO32? and NO2?), out of 16 tested, reacted with at least one of four aminopolycarboxylic acids, i.e. iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetic acid and triethylenetetramine‐N,N,N′,N″,N′″,N′″‐hexaacetic acid, at the ES interface to produce the dehydration products that gave intense mass ion responses, sufficient for trace analysis. As examples, trace determinations of CrVI and silica in water samples were achieved after online ion exchange chromatography, where the dehydration product of CrO42? and NTA (m/z 290) and that of SiO44? and IDA (m/z 192) were measured. The limits of detection of the respective methods were 17 nM (0.83 ng Cr/ml) for CrVI and 0.17 μM (4.8 ng Si/mL) for SiO44?. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
Two kinds of monocyclic troponoid mesogens, 2,5-dialkanoyloxytropones (4) and 5-alkanoyloxy2-alkoxytropones (5), were prepared. The former showed monotropic smectic A phases and the virtual isotropic liquid-smectic A transitions of the latter were determined by extrapolation of results in a binary phase diagram. Comparing the mesogenic properties between the tropones 4 and the 2-alkanoyloxy-5-alkoxytropones (1), the alkanoyloxy group at C-5 enhances both the melting points and the transition temperatures of the smectic A phases. From the comparison between 5 and 1, the alkanoyloxy group at C-2 lowers the melting points.  相似文献   
9.
Pharmacometric characterization studies of liquiritigenin have historically overlooked its chiral nature. To achieve complete characterization, an analytical method enabling the detection and quantification of the individual enantiomers of racemic (±) liquiritigenin is necessary. Resolution of the enantiomers of liquiritigenin was achieved using a simple high‐performance liquid chromatographic method. A Chiralpak® ADRH column was employed to perform baseline separation with UV detection at 210 nm.The standard curves were linear ranging from 0.5 to 100 µg/mL for each enantiomer. Limit of quantification was 0.5 µg/mL. The assay was applied successfully to stereoselective serum disposition of liquiritigenin enantiomers in rats. Liquiritigenin enantiomers were detected in serum as both aglycones and glucuronidated conjugates. Both unconjugated enantiomers had a serum half‐life of ~15 min in rats. The volume of distribution (Vd) for S‐ and R‐liquiritigenin was 1.49 and 2.21 L/kg, respectively. Total clearance (Cltotal) was 5.12 L/h/kg for S‐liquiritigenin and 4.79 L/h/kg for R‐liquiritigenin, and area under the curve (AUC0‐inf) was 3.95 µg h/mL for S‐liquiritigenin and 4.23 µg h/mL for R‐liquiritigenin. The large volume of distribution coupled with the short serum half‐life suggests extensive distribution of liquiritigenin into tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
An analytical method enabling the detection and quantification of the individual enantiomers of racemic (±) pinocembrin is required to fully characterize its pharmacokinetic disposition. Direct resolution of the enantiomers of pinocembrin was achieved using a novel and simple reversed‐phase high‐performance liquid chromatography method with electrospray ionization and detection by mass spectrometry in rat serum. A Chiralcel® AD‐RH column was employed to perform baseline separation with electrospray positive‐mode ionization with selected ion monitoring detection. The standard curves were linear from 0.5 to 100 µg/mL for each enantiomer. The limit of quantification was 0.5 µg/mL. The assay was applied successfully to stereoselective serum disposition of pinocembrin enantiomers in rats. Pinocembrin enantiomers were detected in serum. Both enantiomers had a serum half‐life of ~15 min in rats. Similar values of volume of distribution between the enantiomers were also observed: 1.76 L/kg for S‐pinocembrin and 1.79 L/kg for R‐pinocembrin. Total clearance was 5.527 L//h/kg for S‐pinocembrin and 5.535 L/h/kg for R‐pinocembrin, and the area under the curve was 1.821 µg h/mL for S‐pinocembrin and 1.876 µg h/mL for R‐pinocembrin. The large volume of distribution coupled with the short serum half‐life suggests extensive distribution of pinocembrin into the tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号