首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   13篇
化学   222篇
力学   2篇
数学   7篇
物理学   47篇
  2023年   2篇
  2021年   1篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   10篇
  2012年   14篇
  2011年   16篇
  2010年   7篇
  2009年   4篇
  2008年   24篇
  2007年   24篇
  2006年   16篇
  2005年   19篇
  2004年   14篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1982年   5篇
  1981年   1篇
  1979年   7篇
  1976年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有278条查询结果,搜索用时 140 毫秒
1.
2.
3.
In the absence of X‐ray data, the exploration of compound binding modes continues to be a challenging task. For structure‐based design, specific features of active sites in different targets play a major role in rationalizing ligand binding characteristics. For example, dibasic compounds have been reported as potent inhibitors of various trypsin‐like serine proteases, the active sites of which contain several binding pockets that can be targeted by cationic moieties. This results in several possible orientations within the active site, complicating the binding mode prediction of such compounds by docking tools. Therefore, we introduced symmetry in bi‐ and tribasic compounds to reduce conformational space in docking calculations and to simplify binding mode selection by limiting the number of possible pocket occupations. Asymmetric bisbenzamidines were used as starting points for a multistage and structure‐guided optimization. A series of 24 final compounds with either two or three benzamidine substructures was ultimately synthesized and evaluated as inhibitors of five serine proteases, leading to potent symmetric inhibitors for the pharmaceutical drug targets matriptase, matriptase‐2, thrombin and factor Xa. This study underlines the relevance of ligand symmetry for chemical biology.  相似文献   
4.
As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single‐electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single‐electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N‐heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late‐stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   
5.
In this contribution, the solid‐state low‐temperature phase structure of [2,2]‐paracyclophane is unambiguously characterised by single‐crystal X‐ray analysis. Additionally, a heat capacity measurement was undertaken, which proves the existence of a λ‐type phase transition at 45 K, a transition that is connected with the formation of a secondary Cp/T feature at 60 K. The low‐temperature phase (<45 K) crystallises in the lower symmetry space group P$\bar 4$ n2, whereas the high‐temperature phase (>60 K) crystallises in space group P42/mnm. This proves what has been postulated both by experimental and theoretical chemists but has repeatedly been dismissed as speculation many times.  相似文献   
6.
7.
8.
9.
Chemical transformations that install heteroatoms into C?H bonds are of significant interest because they streamline the construction of value‐added small molecules. Direct C?H oxyfunctionalization, or the one step conversion of a C?H bond to a C?O bond, could be a highly enabling transformation due to the prevalence of the resulting enantioenriched alcohols in pharmaceuticals and natural products,. Here we report a single‐flask photoredox/enzymatic process for direct C?H hydroxylation that proceeds with broad reactivity, chemoselectivity and enantioselectivity. This unified strategy advances general photoredox and enzymatic catalysis synergy and enables chemoenzymatic processes for powerful and selective oxidative transformations.  相似文献   
10.
Low pressure steam turbine blades are subjected to high static and dynamic loads during operation. These loads strongly depend on the turbine's rotational speed, leading to entirely new load conditions. To avoid high dynamic stresses due to the forced vibrations, a coupling of the blades, such as shrouds or snubber coupling, is applied to reinforce the structure. In this work the influence of the rotational speed on the vibration behavior of shrouded blades is investigated. Two fundamental phenomena are considered: the stress stiffening and the spin softening effect. Both effects are caused by centrifugal forces and affect the structural mechanical properties, i.e. the stiffness matrix K , of the rotating system. Since the rotational speed Ω appears quadratically, it is possible to derive the stiffness matrix as a second order matrix polynomial in Ω2 [3]. In the case of shrouded blades, contact forces between neighboring blades must be taken into account. The contact status and the pressure distribution in particular is strongly influenced by the rotational speed, respectively, centrifugal forces, caused by the untwisting and radial deformation of the blades. For the calculation, a three dimensional structural mechanical model including a spatial contact model is considered. The solution of the nonlinear equations of motion is based on the well known Multiharmonic Balance Method [2]. Here, the nonlinear forces are computed in the time domain and transferred in the frequency domain by the use of the Fast Fourier Transformation (FFT), also known as the Alternating Frequency Time method (AFT) [1]. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号