首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9199篇
  免费   276篇
  国内免费   66篇
化学   6153篇
晶体学   72篇
力学   292篇
综合类   1篇
数学   1414篇
物理学   1609篇
  2023年   52篇
  2021年   77篇
  2020年   179篇
  2019年   134篇
  2018年   99篇
  2017年   111篇
  2016年   205篇
  2015年   165篇
  2014年   206篇
  2013年   443篇
  2012年   521篇
  2011年   626篇
  2010年   305篇
  2009年   246篇
  2008年   528篇
  2007年   505篇
  2006年   475篇
  2005年   489篇
  2004年   462篇
  2003年   309篇
  2002年   281篇
  2001年   87篇
  2000年   79篇
  1999年   52篇
  1998年   67篇
  1997年   87篇
  1996年   131篇
  1995年   85篇
  1994年   72篇
  1993年   92篇
  1992年   68篇
  1991年   82篇
  1990年   76篇
  1989年   64篇
  1988年   73篇
  1987年   68篇
  1986年   57篇
  1985年   125篇
  1984年   138篇
  1983年   94篇
  1982年   118篇
  1981年   117篇
  1980年   96篇
  1979年   91篇
  1978年   118篇
  1977年   103篇
  1976年   91篇
  1975年   78篇
  1974年   72篇
  1973年   64篇
排序方式: 共有9541条查询结果,搜索用时 31 毫秒
1.
Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, that is, the DFT based “clusters-in-a-liquid” solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP−D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations, which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.  相似文献   
2.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   
3.
Journal of Computer-Aided Molecular Design - We here present a streamlined, explainable graph convolutional neural network (gCNN) architecture for small molecule activity prediction. We first...  相似文献   
4.

Production simulation from fractured shale reservoirs is often performed by simplifying the hydraulic fractures as rectangular planes with homogeneous aperture. This study investigates the effects of heterogeneous fracture aperture and proppant distribution in realistic, non-rectangular fractures on the multi-phase production from shales. The heterogeneous hydraulic fractures are generated with the GEOS multiphysics simulator under realistic 3D stress field. These fractures are embedded into the TOUGH+ multi-phase flow simulator for production simulation. The results emphasize the importance of flow barriers within the hydraulic fractures, due both to low-aperture regions caused by the stress-shadow effect and the settling of proppant. The production rate is particularly sensitive to aperture heterogeneity if the flow barriers are close to the wellbore such that a great portion of fracture volume is isolated from the well. A stage-to-stage comparison reveals that production from different stages could vary significantly because the local stress field leads to different fracture area and aperture. The use of proppant prevents fracture closure, but if the propped regions are far from the well, they do not enhance production because flow barriers between these regions and the well act as bottlenecks. The present study highlights the importance of incorporating aperture heterogeneity into production simulation, provides insights on the relationship between flow barriers, proppant concentration, and well production, and proposes a practical method to mitigate numerical difficulties when modeling heterogeneous fractures.

  相似文献   
5.

Although cellulose nanomaterials have promising properties and performance in a wide application space, one hinderance to their wide scale industrial application has been associated with their economics of dewatering and drying and the ability to redisperse them back into suspension without introducing agglomerates or lose of yield. The present work investigates the dewatering of aqueous suspensions of cellulose nanofibrils (CNFs) using ultrasound as a potentially low-cost, non-thermal, and scalable alternative to traditional heat-based drying methods such as spray drying. Specifically, we use vibrating mesh transducers to develop a direct-contact mode ultrasonic dewatering platform to remove water from CNF suspensions in a continuous manner. We demonstrate that the degree of dewatering is modulated by the number of transducers, their spatial configuration, and the flow rate of the CNF suspension. Water removal of up to 72 wt.% is achieved, corresponding to a final CNF concentration of 11 wt.% in 30 min using a two-transducer configuration. To evaluate the redispersibility of the dewatered CNF material, we use a microscopic analysis to quantify the morphology of the redispersed CNF suspension. By developing a custom software pipeline to automate image analysis, we compare the histograms of the dimensions of the redispersed dewatered fibrils with the original CNF samples and observe no significant difference, suggesting that no agglomeration is induced due to ultrasonic dewatering. We also perform SEM analysis to evaluate the nanoscale morphology of these fibrils showing a width range of 20 nm–4 um. We estimate that this ultrasound dewatering technique is also energy-efficient, consuming up to 36% less energy than the enthalpy of evaporation per kilogram of water. Together with the inexpensive cost of transducers (<?$1), the potential for scaling up in parallel flow configurations, and excellent redispersion of the dewatered CNFs, our work offers a proof-of-concept of a sustainable CNF dewatering system, that addresses the shortcomings of existing techniques.

  相似文献   
6.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
7.
Mathematical Programming - We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function...  相似文献   
8.
Porous media combustion (PMC) is an active field of research with a number of potential advantages over free-flame combustors. A key contributor to these phenomena is the interphase heat exchange and heat recirculation from the products upstream to the reactants. In this paper, we present a network model that captures the conjugate heat transfer in pore-resolved 2D simulations of PMC. A series of simulations are presented with varying solid conduction and inlet velocity to isolate the role of conjugate heat transfer on the salient features of the burner, including flame stability, axial temperature profiles, and flame structure. We show that both the flame stabilization and the propagation behavior are strongly related to the conjugate heat transfer, and the flame stability regime is shifted to higher velocities as the conductivity of the solid material is increased.  相似文献   
9.
X‐ray emission spectroscopy (XES) of transition metal compounds is a powerful tool for investigating the spin and oxidation state of the metal centers. Valence‐to‐core (vtc) XES is of special interest, as it contains information on the ligand nature, hybridization, and protonation. To date, most vtc‐XES studies have been performed with high‐brightness sources, such as synchrotrons, due to the weak fluorescence lines from vtc transitions. Here, we present a systematic study of the vtc‐XES for different titanium compounds in a laboratory setting using an X‐ray tube source and energy dispersive microcalorimeter sensors. With a full‐width at half‐maximum energy resolution of approximately 4 eV at the Ti Kβ lines, we measure the XES features of different titanium compounds and compare our results for the vtc line shapes and energies to previously published and newly acquired synchrotron data as well as to new theoretical calculations. Finally, we report simulations of the feasibility of performing time‐resolved vtc‐XES studies with a laser‐based plasma source in a laboratory setting. Our results show that microcalorimeter sensors can already perform high‐quality measurements of vtc‐XES features in a laboratory setting under static conditions and that dynamic measurements will be possible in the future after reasonable technological developments.  相似文献   
10.
Statistical Inference for Stochastic Processes - This paper deals with the weak convergence of nonparametric estimators of the multidimensional and multidimensional-multivariate renewal functions...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号