首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3679篇
  免费   165篇
  国内免费   45篇
化学   2515篇
晶体学   26篇
力学   151篇
数学   345篇
物理学   852篇
  2023年   14篇
  2021年   52篇
  2020年   72篇
  2019年   58篇
  2018年   45篇
  2017年   43篇
  2016年   94篇
  2015年   77篇
  2014年   130篇
  2013年   230篇
  2012年   244篇
  2011年   282篇
  2010年   174篇
  2009年   195篇
  2008年   236篇
  2007年   193篇
  2006年   186篇
  2005年   171篇
  2004年   165篇
  2003年   154篇
  2002年   134篇
  2001年   92篇
  2000年   86篇
  1999年   45篇
  1998年   47篇
  1997年   39篇
  1996年   52篇
  1995年   47篇
  1994年   45篇
  1993年   44篇
  1992年   29篇
  1991年   26篇
  1990年   23篇
  1989年   32篇
  1988年   16篇
  1987年   25篇
  1986年   26篇
  1985年   32篇
  1984年   28篇
  1983年   29篇
  1982年   19篇
  1981年   21篇
  1980年   12篇
  1979年   13篇
  1978年   12篇
  1977年   16篇
  1976年   20篇
  1975年   17篇
  1974年   10篇
  1973年   9篇
排序方式: 共有3889条查询结果,搜索用时 15 毫秒
1.
Green synthesis of nanoparticles by eco-friendly methods is a recent technique which draws the attention of researchers because of the reward over many conventional chemical methods. The present work focuses on aqueous Limonia acidissima leaf extract in synthesizing silver nanoparticles and its applications in a simple way. The silver nanoparticles formed were characterized by Infrared, Ultra violet-visible, X-ray diffraction, transmission electron microscopic, and atomic force microscopic techniques. The powder X-ray diffraction studies and transmission electron microscopic images reveal that the silver nanoparticles synthesized were approximately 10–40 nm and have a spherical structure. The nanoparticles were assayed for their antibacterial, antifungal and antioxidant activity. The antimicrobial studies for the silver nanoparticles show a maximum zone of inhibition of 8.8 mm for Bacillus subtilis bacteria and 8.5 mm for Candida albicans fungi at 3 and 1 μg/mL respectively. In-silico ADMET studies reveal that the toxicity, bioactivity, pharmacokinetics and drug-likeness properties of Limonia acidissima leaf extract is good. The molecular docking studies show that the microbial activity is high for Bacillus subtilis and Candida albicans showing the coincidence of the in silico and in vitro studies as expected. The free radical scavenging activity of nanoparticles is 80 for 100 μg/mL. The 50% of inhibition of silver nanoparticles against human breast cancer cell lines is 18 μg/mL. It is evident that silver nanoparticles would be helpful in treating cancer cell lines and have great perspectives in the biomedical sector.  相似文献   
2.
Ketones have been considered as potential biofuels and main components of blend stock for internal engines. To better understand the chemical kinetics of ketones, ignition delay times of 2-pentanone (propyl methyl ketone, PMK) and 3-pentanone (diethyl ketone, DEK) were measured at temperatures of 895–1128 K under 10 and 20 bar, at equivalence ratios (?) of 0.5 and 1.0 in a rapid compression machine (RCM). To explore the impact of carbonyl functionality and resonance stabilized structures of fuel radicals on their combustion kinetics, high-temperature pyrolysis at 1130 K and relatively low-temperature oxidation at 950 K studies were performed in an RCM, and the time-resolved species concentration profiles under these two conditions were quantified using a fast sampling system and gas chromatography (GC). A new kinetic model containing low-temperature reactions was built aiming at predicting the pyrolysis and oxidation behaviors of both ketones. The consumption pathways of the resonance stabilization fuel radicals through oxygen addition and following reactions are promoted since the decomposition rates of these radicals are about 4 orders magnitudes lower than regular fuel radicals. The occurrences of the so-called “addition-dissociation reactions”, i.e., ketones reacting with a hydrogen yielding aldehyde or reacting with a methyl radical yielding shorter-chain-length ketones, are verified in pyrolysis experiments. Based on experiments and model analysis, the carbonyl functionality in both ketones is preserved during the process of β-scissions of fuel radicals and α-scissions of fuel-related acyl radicals, resulting in the direct formation of CO and ketene. However, the position of carbonyl functionality has a significant impact on the species pools.  相似文献   
3.
Kim  Bohyeong  Kim  Jaewon  Kang  Dongjin  Baek  Hong-Kil  Chung  Jintai 《Nonlinear dynamics》2021,104(4):3293-3308
Nonlinear Dynamics - This paper presents a method to reduce the squeal noise generated by an automotive water pump. The noise and vibration of the water pump were analyzed through experiments, from...  相似文献   
4.
Sim  Woojeong  Lee  Booyeong  Kim  Dong Ju  Lee  Jeong A  Kim  Jaewon  Chung  Jintai 《Nonlinear dynamics》2022,108(2):987-1004
Nonlinear Dynamics - This study analyzes the vibro-impact behavior of two adjacent cantilever beams subjected to vibration generated by applying harmonic excitation to their rigid base. For the...  相似文献   
5.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   
6.
Based on the mechanical experimental results of methane hydrate (MH), a bond contact model considering the rate-dependency of MH is proposed. A CFD–DEM scheme considering fluid compressibility is used to simulate a series of undrained cyclic shear tests of numerical methane-hydrate-bearing sediment (MHBS) samples. The dynamic behavior, including stress–strain relationship, dynamic shear modulus, and damping ratio, is investigated. In addition, the force chains, contact fabric and averaged pure rotation rate (APR) are examined to investigate the relationships between micromechanical variables and macromechanical responses in the DEM MH samples. The effects of temperature, confining pressure and MH saturation are also analyzed. Due to the micro-structural strengthening by the MH bonds, no obvious change in microscopic quantities is observed, and the samples remain at the elastic stage under the applied low-shear stress level. When confining pressure and MH saturation increase, the dynamic elastic modulus increases, while the damping ratio decreases. An increasing temperature (leading to weakening of MH bonds) can lower the dynamic elastic modulus, but has almost no impact on the damping ratio. On the contrary, an increasing cyclic shear stress level lowers the damping ratio, but has almost no effect on the dynamic elastic modulus.  相似文献   
7.
Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.  相似文献   
8.
In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g−1 at 0.7 A g−1 and good rate capability of 34.8% at 4.9 A g−1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.  相似文献   
9.
In the research of new compounds with multifunctional applications, heterobinuclear palladium (II) complexes based on organometallic dithiocarbazates (DTCZs) have been isolated. The organometallic DTCZ ligands of the general formula [{(η5-C5H4)-CH=NNHC(S)SCH3}]MLn [MLn = Re (CO)3 ( 2a ); Mn (CO)3 ( 2b ); FeCp ( 2c )] were prepared by the reaction between formyl organometallic precursors ( 1a−c ) with S-methyldithiocarbazate. Subsequently, a two-step reaction of 2a−c with: (i) K2[PdCl4] and (ii) PPh3 yielded heterobinuclear complexes [Pd{MLn(η5-C5H4)-CH=NNHC(S)SCH3}–(Cl)(PPh3)] [MLn = Re (CO)3 ( 3a ); Mn (CO)3 ( 3b ); FeCp ( 3c )]. All compounds were characterized by conventional spectroscopic techniques (infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis). In addition, the molecular structures of 2a , 2c and 3c were determined by single-crystal X-ray diffraction. The new palladium (II) complexes ( 3a−c ) were evaluated as antiproliferative agents against non-small cell lung cancer cells (H1299 cells). Complexes 3a and 3b containing cyrhetrenyl- and cymantrenyl-DTCZ ligands, respectively, were more active than their ferrocenyl analogue 3c . The activity was associated with the electron-withdrawing properties of the (η5-C5H4)M (CO)3 moieties and their better lipophilicity than that of the ferrocenyl analogue. In addition, we studied the capacity of metalloligands ( 2a−c ) and palladium (II) complexes ( 3a−c ) to remove methylene blue in water under UV–visible light irradiation. The results established that the complexes showed moderate efficiency and were less active than their corresponding free ligands.  相似文献   
10.
An electrochemical sensor based on the conducting polymer composite with a palladium complex (Pd(C2H4N2S2)2) was developed for the detection of serotonin and dopamine simultaneously in the breast cancer cell and human plasma samples. The proposed sensor was fabricated using the Pd(C2H4N2S2)2 complex‐anchored poly2,2 : 5,2‐terthiophene‐3‐(p‐benzoic acid) (pTBA) layer on the AuNPs decorated reduced graphene oxide (AuNPs@rGO) substrate, which revealed the enhanced anodic current of the target species. The sensor probe was characterized by electrochemical and surface analysis methods. The experimental parameters affecting the sensor performance were optimized, in terms of AuNPs@rGO concentration, the number of electropolymerization cycle for pTBA, immobilization time of Pd(C2H4N2S2)2, and pH. The dynamic ranges for serotonin and dopamine were obtained from 0.02 to 200 μM, and from 0.1 to 200 μM with the detection limit of 2.5, and 24.0 nM, respectively. The reliability of proposed sensor was evaluated using cancer cell lines for the clinical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号