首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1906篇
  免费   47篇
  国内免费   7篇
化学   1371篇
晶体学   36篇
力学   26篇
数学   172篇
物理学   355篇
  2023年   15篇
  2022年   13篇
  2021年   36篇
  2020年   38篇
  2019年   33篇
  2018年   35篇
  2017年   25篇
  2016年   40篇
  2015年   43篇
  2014年   51篇
  2013年   102篇
  2012年   122篇
  2011年   153篇
  2010年   70篇
  2009年   87篇
  2008年   112篇
  2007年   98篇
  2006年   101篇
  2005年   94篇
  2004年   80篇
  2003年   55篇
  2002年   65篇
  2001年   25篇
  2000年   22篇
  1999年   15篇
  1997年   15篇
  1996年   17篇
  1995年   19篇
  1994年   19篇
  1993年   24篇
  1992年   21篇
  1991年   9篇
  1989年   12篇
  1988年   14篇
  1986年   12篇
  1985年   15篇
  1984年   19篇
  1983年   15篇
  1982年   25篇
  1981年   17篇
  1980年   15篇
  1979年   10篇
  1978年   8篇
  1977年   13篇
  1976年   16篇
  1975年   12篇
  1974年   15篇
  1973年   12篇
  1972年   11篇
  1971年   9篇
排序方式: 共有1960条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Surface-tethered polymers are unique molecular architectures that have been recently used in advanced sensors, electronics and biomedical applications. However, techniques for characterizing these materials in their surface-tethered form remain limited. The incorporation of luminescent functionality into these materials has enabled new characterization methods, while also unlocking new applications in optoelectronics, stenography and sensing. Micron-scale photolithography techniques have recently enabled the preparation of high-resolution patterns, as well as architectures with unique photophysical properties. Herein, we provide an overview of the techniques used to prepare luminescent polymer brush materials and their applications in stimuli-responsive sensors, cell adhesion materials, and optoelectronics. We also provide our perspective on the promising future uses of surface-tethered polymers, as well as the short-term challenges and opportunities in the field.  相似文献   
5.
Intramolecular chalcogen bonding in arylhydrazones of sulfamethizole is strengthened by conjugation in the π-system of a noncovalent five-membered ring. The S⋅⋅⋅O distance in the sulfamethizole moiety of these compounds ranges from 2.698(3) to 2.806(15) Å, which indicates its strong dependence on the attached arylhydrazone fragments. Information on the nature of the intramolecular chalcogen bond was afforded by DFT calculations.  相似文献   
6.
We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1 -liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1 -liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications.  相似文献   
7.
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by three different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community toward the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.  相似文献   
8.
Functionalization of the phenolic rim of p-tert-butylcalix[8]arene with phenanthroline to create a cavity leads to formation of two regioisomers. Substitution of positions 1 and 5 produces the known C2v-symmetric regioisomer 1,5-(2,9-dimethyl-1,10-phenanthroyl)-p-tert-butylcalix[8]arene ( L1,5 ), while substitution of positions 1 and 4 produces the Cs-symmetric regioisomer 1,4-(2,9-dimethyl-1,10-phenanthroyl)-p-tert-butylcalix[8]arene ( L1,4 ) described herein. [ Cu(L1,4)I ] was synthesized from L1,4 and CuI in good yield and characterized spectroscopically. To evaluate the effect of its cavity on catalysis, Ullmann-type C−S coupling was chosen as proof-of-concept. Selected aryl halides were used, and the results compared with the previously reported Cu(I)/ L1,5 system. Only highly activated aryl halides generate the C−S coupling product in moderate yields with the Cu(I)/ L1,4 system. To shed light on these observations, detailed computational investigations were carried out, revealing the influence of the calix[8]arene macrocyclic morphology on the accessible conformations. The L1,4 regioisomer undergoes a deformation that does not occur with L1,5 , resulting in an exposed catalytic center, presumably the cause of the low activity of the former system. The 1,4-connectivity was confirmed in the solid-state structure of the byproduct [ Cu(L1,4 − H) (CH3CN)2] that features Cu(I) coordinated inside a cleft defined by the macrocyclic framework.  相似文献   
9.
The geometric and electronic structure of 1,3-dipolar species, in particular of nitrile imines, can be surprisingly intricate. A particular example is the C-phenyl-nitrilimine, which exists as two energy minima that constitute bond-shift isomers. To examine the effect of substituents in the phenyl ring, here we investigate the meta and para OH substituted derivatives. These two nitrile imines were generated in an argon matrix by UV-irradiation of 2H-tetrazole precursors and found to photoisomerize to carbodiimides via 1H-diazirines. The different effects of the OH substitution in meta and para positions on the bond-shift isomerism are rationalized with the support of Natural Resonance Theory and Hirshfeld atomic charges. The understanding of how substitution affects the structural characteristics of C-phenyl-nitrilimines, opens a door to modulate the chemistry of those compounds (e. g. in cycloaddition reactions) by appropriate tuning of their substitution (substituent type and position).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号