首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   1篇
化学   17篇
力学   9篇
数学   14篇
物理学   15篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2007年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1986年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Numerical simulation methods regarding fabric and cloth draping are generally based on mechanical models. These models are usually applied to uniform grids representing the true geometry of the fabric. Fabrics being a very flexible material, wrinkles appear on its surface when submitted to free or constrained motion. The main problem of the simulation is to represent realistically cloth surface motion. This is strongly dependent on the surface discretization. We present a new cloth animation scheme based on adaptive surface discretization. It can be seen as a multi-grid method which allows us to obtain realistic simulations. We propose also a new mechanical model well suited to our adaptive meshing strategy. A numerical example is given to show the efficiency of the method. To cite this article: J. Villard et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 561–566.  相似文献   
2.
The analysis of mechanical structures using the Finite Element Method in the framework of large elastoplastic strain, needs frequent remeshing of the deformed domain during computation. Indeed, the remeshing is due to the large geometrical distortion of finite elements and the adaptation to the physical behavior of the solution. This paper gives the necessary steps to remesh a mechanical structure during large elastoplastic deformations with damage. An important part of this process is constituted by geometrical and physical error estimates. The proposed method is integrated in a computational environment using the ABAQUS/Explicit solver and the BL2D-V2 adaptive mesher. To cite this article: H. Borouchaki et al., C. R. Mecanique 330 (2002) 709–716.  相似文献   
3.
We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems.  相似文献   
4.
In this paper we analyze the transport of passive tracers by deterministic stationary incompressible flows which can be decomposed over an infinite number of spatial scales without separation between them. It appears that a low order dynamical system related to local Peclet numbers can be extracted from these flows and it controls their transport properties. Its analysis shows that these flows are strongly self-averaging and super-diffusive: the delay (r) for any finite number of passive tracers initially close to separate till a distance r is almost surely anomalously fast ( (r) r2–, with > 0). This strong self-averaging property is such that the dissipative power of the flow compensates its convective power at every scale. However as the circulation increases in the eddies the transport behavior of the flow may (discontinuously) bifurcate and become ruled by deterministic chaos: the self-averaging property collapses and advection dominates dissipation. When the flow is anisotropic a new formula describing turbulent conductivity is identified.  相似文献   
5.
双光束组合激光辐照光导型CdS光电探测器的实验研究   总被引:1,自引:0,他引:1  
为研究波段内和波段外组合激光对光导型光电探测器的辐照效应,实验采用532nm(波段内)和1319nm(波段外)双光束组合连续激光辐照光导型CdS光电探测器,分别改变两束激光的辐照功率,得到探测器的电压响应曲线。实验结果表明,光电探测器对波段内和波段外激光都有响应,但在激光开始和停止辐照瞬间探测器对两束激光的响应电压刚好相反。探测器对波段外激光的电压响应随线性工作区间内的波段内激光功率升高而增大;随着波段内激光趋于饱和,对波段外激光的响应电压近似指数级下降。分析认为,光电探测器对波段外激光的响应为光激发热载流子效应,是由自由载流子吸收激光能量产生带内跃迁引起的;波段内激光辐照影响探测器对波段外激光的吸收系数。  相似文献   
6.
激光辐照下复合材料树脂基热分解3维温度场模型   总被引:2,自引:0,他引:2       下载免费PDF全文
 采用控制体积法,从质量和能量守恒角度,推导了激光辐照下复合材料树脂基热分解时温度变化的基本方程。用多步模型描述树脂的热分解反应。提出了热分解气体的1维运动假设,这使得可以在3维情况下考虑热分解气体对流传输的影响,且在不引入力学量的前提下实现3维温度场模型的封闭。考虑到树脂基复合材料的各向异性,对部分分解材料的导热率计算公式进行了推导,并重新推导了部分分解材料对激光的吸收系数计算公式。在一定的简化下,推导的能量守恒方程与文献结果一致。  相似文献   
7.
8.
In this work, an efficient analytical model for the stress analysis of single lap joints with a functionally graded adhesive bondline is proposed which considers peel as well as shear stresses in the adhesive. The model takes into account the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young's modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young's modulus distributions and their effect on the peel and shear stresses are studied and discussed in detail. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
The optimal control methodology called concentration-of-measure optimal control (COMOC), seeks to minimise a concen- tration-of-measure upper bound on the probability of failure of an uncertain system. This bound is computed for a system characterised by a single performance measure depending on random inputs. This work considers controlled multibody dynamics taking place in an uncertain environment. The goal is to quantify uncertainty in a controlled robot manoeuvre and to minimise the probability of failure with regard to a performance measure. First, a deterministic optimal control problem is solved, yielding state and control trajectories that minimise an objective function. Boundary conditions for the optimal control problem are chosen such that the system performs ideally in the sense of the performance measure. Secondly, the obtained manoeuvre is reconsidered in the presence of uncertainty. Using a concentration-of-measure inequality, a rigorous upper bound for the probability of failure is derived. Finally, an optimisation is performed that searches for a control sequence (in the neighbourhood of the given one), that minimises the probability of failure. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
We consider the temporal homogenization of linear ODEs of the form \({\dot{x}=Ax+\epsilon P(t)x+f(t)}\), where P(t) is periodic and \({\epsilon}\) is small. Using a 2-scale expansion approach, we obtain the long-time approximation \({x(t)\approx {\rm exp}(At) \left( \Omega(t)+\int_0^t {\rm exp}(-A \tau) f(\tau) {\rm d}\tau \right)}\), where \({\Omega}\) solves the cell problem \({\dot{\Omega}=\epsilon B \Omega + \epsilon F(t)}\) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a \({{\mathcal{O}}(\epsilon^{-1})}\) time-scale), and show how B can be computed (at a cost independent of \({\epsilon}\)). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold \({\kappa}\) proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than \({n\kappa}\). Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (\({n\approx 1000}\) for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号