首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4045篇
  免费   85篇
  国内免费   7篇
化学   2725篇
晶体学   17篇
力学   104篇
数学   270篇
物理学   1021篇
  2020年   27篇
  2019年   48篇
  2016年   60篇
  2015年   50篇
  2014年   80篇
  2013年   149篇
  2012年   100篇
  2011年   153篇
  2010年   98篇
  2009年   80篇
  2008年   135篇
  2007年   128篇
  2006年   133篇
  2005年   121篇
  2004年   109篇
  2003年   96篇
  2002年   70篇
  2001年   63篇
  2000年   58篇
  1999年   45篇
  1998年   40篇
  1997年   63篇
  1996年   72篇
  1995年   76篇
  1994年   65篇
  1993年   94篇
  1992年   56篇
  1991年   48篇
  1990年   50篇
  1989年   56篇
  1988年   35篇
  1987年   54篇
  1986年   53篇
  1985年   55篇
  1984年   56篇
  1983年   43篇
  1982年   46篇
  1981年   56篇
  1980年   62篇
  1979年   44篇
  1978年   60篇
  1977年   37篇
  1976年   68篇
  1975年   62篇
  1974年   51篇
  1973年   61篇
  1972年   34篇
  1971年   25篇
  1969年   28篇
  1967年   44篇
排序方式: 共有4137条查询结果,搜索用时 15 毫秒
1.
2.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   
3.
Targeting epidermal growth factor receptor (EGFR) through an allosteric mechanism provides a potential therapeutic strategy to overcome drug-resistant EGFR mutations that emerge within the ATP binding site. Here, we develop an allosteric EGFR degrader, DDC-01-163, which can selectively inhibit the proliferation of L858R/T790M (L/T) mutant Ba/F3 cells while leaving wildtype EGFR Ba/F3 cells unaffected. DDC-01-163 is also effective against osimertinib-resistant cells with L/T/C797S and L/T/L718Q EGFR mutations. When combined with an ATP-site EGFR inhibitor, osimertinib, the anti-proliferative activity of DDC-01-163 against L858R/T790M EGFR-Ba/F3 cells is enhanced. Collectively, DDC-01-163 is a promising allosteric EGFR degrader with selective activity against various clinically relevant EGFR mutants as a single agent and when combined with an ATP-site inhibitor. Our data suggests that targeted protein degradation is a promising drug development approach for mutant EGFR.  相似文献   
4.
Graphitic carbon nitride quantum dots (g-CNQDs) are highly promising photoresponsive materials. However, synthesis of monodispersed g-CNQDs remains challenging. Here we report the dual function of MOF [Cu3BTC2] (HKUST-1) as a catalyst and template simultaneously to prepare g-CNQDs under mild conditions. Cyanamide (CA), a graphitic carbon nitride precursor, catalytically dimerized inside the larger MOF cavities at 90 °C and condensed into g-CNQDs at 120 °C in a controlled fashion. The HKUST-1 template was stable under the reaction conditions, leading to uniform g-CNQDs with a particle size of 2.22±0.68 nm. The as prepared g-CNQDs showed photoluminescence emission with a quantum yield of 3.1 %. This concept (MOF dual functionality) for catalyzing CA polycondensation (open metal sites (OMSs) effect) and controlling the produced particle size (pore-templating effect), together with the tunable MOF porosity, is expected to produce unique g-CNQDs with controllable size, morphology, and surface functionality.  相似文献   
5.
The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.

Biocatalytic control over the stiffness of pH-responsive hydrogels is applied to develop shape-memory, self-healing and controlled release matrices.  相似文献   
6.
Rational design and synthesis of efficient electrocatalysts are important constituents in addressing the currently growing provision issues. Typical reactions, which are important to catalyze in this respect, include CO2 reduction, the hydrogen and oxygen evolution reactions as well as the oxygen reduction reaction. The most efficient catalysts known up‐to‐date for these processes usually contain expensive and scarce elements, substantially impeding implementation of such electrocatalysts at a larger scale. Metal‐organic frameworks (MOFs) and their derivatives containing affordable components and building blocks, as an emerging class of porous functional materials, have been recently attracting a great attention thanks to their tunable structure and composition together with high surface area, just to name a few. Up to now, several MOFs and MOF‐derivatives have been reported as electrode materials for the energy‐related electrocatalytic application. In this review article, we summarize and analyze current approaches to design such materials. The design strategies to improve the Faradaic efficiency and selectivity of these catalysts are discussed. Last but not least, we discuss some novel strategies to enhance the conductivity, chemical stability and efficiency of MOF‐derived electrocatalysts.  相似文献   
7.
Using ionic liquids (ILs) as linker precursors, the well-known metal-organic framework (MOF) UiO-66 (Universitetet i Oslo) and the recently reported MOF hcp UiO-66 (hexagonal closed packed) have been successfully synthesized and characterized. The advantage of the applied novel synthesis approach is an economically and environmentally benign work-up procedure, due to the better solubility of the IL. Additionally, the reactivity of the terephthalate anions is increased compared to terephthalic acid, resulting in faster MOF formation with an increased amount of defects in the MOF structure. In order to explore to the influence of defects on the catalytic performance, the cyclisation of citronellal to isopulegol was employed as test reaction. The activity of hcp UiO-66 and fcc UiO-66 (face centered cubic) is improved compared to other MOF or zeolite based catalysts, while the selectivity is similar.  相似文献   
8.
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.  相似文献   
9.
A series of non-fullerene acceptors based on perylene monoimides coupled in the peri position through phenylene linkers were synthesized via Suzuki-coupling reactions. Various substitution patterns were investigated using density functional theory (DFT) calculations in combination with experimental data to elucidate the geometry and their optical and electrochemical properties. Further investigations of the bulk properties with grazing incidence wide angle X-ray scattering (GIWAXS) gave insight into the stacking behavior of the acceptor thin films. Electrochemical and morphological properties correlate with the photovoltaic performance of devices with the polymeric donor PBDB-T and a maximum efficiency of 3.17 % was reached. The study gives detailed information about structure–property relationships of perylene-linker-perylene compounds.  相似文献   
10.
We construct planar bi-Sobolev mappings whose local volume distortion is bounded from below by a given function fLp with p>1. More precisely, for any 1<q<(p+1)/2 we construct W1,q-bi-Sobolev maps with identity boundary conditions; for fL, we provide bi-Lipschitz maps. The basic building block of our construction are bi-Lipschitz maps which stretch a given compact subset of the unit square by a given factor while preserving the boundary. The construction of these stretching maps relies on a slight strengthening of the celebrated covering result of Alberti, Csörnyei, and Preiss for measurable planar sets in the case of compact sets. We apply our result to a model functional in nonlinear elasticity, the integrand of which features fast blowup as the Jacobian determinant of the deformation becomes small. For such functionals, the derivation of the equilibrium equations for minimizers requires an additional regularization of test functions, which our maps provide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号