首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   13篇
力学   2篇
数学   2篇
物理学   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
Bulk Zr0.25Hf075NiSn half-Heusler (HH) nanocomposites containing various mole fractions of full-Heusler (FH) inclusions were prepared by solid state reaction of pre-synthesized HH alloy with elemental Ni at 1073 K. The microstructures of spark plasma sintered specimens of the HH/FH nanocomposites were investigated using transmission electron microscopy and their thermoelectric properties were measured from 300 K to 775 K. The formation of coherent FH inclusions into the HH matrix arises from solid-state Ni diffusion into vacant sites of the HH structure. HH(1–y)/FH(y) composites with mole fraction of FH inclusions below the percolation threshold, y∼0.2, show increased electrical conductivity, reduced Seebeck coefficient and increased total thermal conductivity arising from gradual increase in the carrier concentration for composites. A drastic reduction (∼55%) in κl was observed for the composite with y=0.6 and is attributed to enhanced phonon scattering due to mass fluctuations between FH and HH, and high density of HH/FH interfaces.  相似文献   
3.
A novel and efficient stability-indicating, reverse phase ultra-performance liquid chromatographic (UPLC®) analytical method was developed and validated for the determination of hexoprenaline in an injectable dosage form. The development of the method was performed using analytical quality by design (AQbD) principles, which are aligned with the future requirements from the regulatory agencies using AQbD principles. The method was developed by assessing the impact of ion pairing, the chromatographic column, pH and gradient elution. The development was achieved with a Waters Acquity HSS T3 (50 × 2.1 mm i.d., 1.8 µm) column at ambient temperature, using sodium dihydrogen phosphate 5 mM + octane-1-sulphonic acid sodium salt 10 mM buffer pH 3.0 (Solution A) and acetonitrile (Solution B) as mobile phases in gradient elution (t = 0 min, 5% B; t = 1 min, 5% B; t = 5 min, 50% B; t = 7 min, 5% B; t = 10 min, 5% B) at a flow rate of 0.5 mL/min and UV detection of 280 nm. The linearity was proven for hexoprenaline over a concentration range of 3.50–6.50 µg/mL (R2 = 0.9998). Forced degradation studies were performed by subjecting the samples to hydrolytic (acid and base), oxidative, and thermal stress conditions. Standard solution stability was also performed. The proposed validated method was successfully used for the quantitative analysis of bulk, stability and injectable dosage form samples of the desired drug product. Using the AQbD principles, it is possible to generate methodologies with enhanced knowledge, which can eventually lead to a reduced regulatory risk, high quality data and lower operational costs.  相似文献   
4.
A quantitative method has been developed and validated for the determination of 2-arachidonoylglycerol (2-AG) in hairless guinea pig plasma by liquid chromatographic-electrospray ionization mass spectrometry. The analytes were extracted from the plasma samples of guinea pig by a single step liquid extraction technique using acetonitrile. The chromatographic separation was conducted on a C18 column using a gradient mobile phase consisting of methanol and water at a flow rate of 0.3 mL min?1. The analytes were quantified by positive electrospray ionization mass spectrometry with selected ion monitoring mode of m/z 401. The limit of detection for 2-AG was 0.5 ng mL?1. This method required only simple processing of the samples to prevent the isomerization of 2-AG during sampling and handling and could be applied to determine the plasma concentration profiles in hairless guinea pigs. The volume of distribution at steady state (V ss), total plasma clearance (CL) and half life (t 1/2β) of 2-AG in hairless guinea pigs were 0.21 ± 0.025 L kg?1, 9.2 ± 1.5 L h?1 kg?1, and 17.7 ± 3.8 min, respectively.  相似文献   
5.
A colloidal gold conjugated anti-baicalin monoclonal antibody (anti-BA MAb) was prepared and used in an immunochromatographic assay (ICA) for BA in Scutellariae Radix and Kampo medicines. This competitive ICA uses an anti-BA MAb which shows a high specificity for BA and baicalein. Its advantages include a short assay time (15 min), no dependence on any instrumental systems, and it can detect BA in plant materials and Kampo medicines. The limit of detection for the ICA was found to be around 0.6 μg mL−1of baicalin. Moreover, the usefulness of the combination of indirect competitive ELISA and the ICA using anti-BA MAb as a quality control method was confirmed for analysis of BA in Scutellariae Radix and Kampo medicines with a sufficient sensitivity (200 ng mL−1 to 2 μg mL−1), obtainable in an easy and timely manner.  相似文献   
6.
We studied transboundary groundwater management problems in the presence of hydraulic fracturing. We found that the presence of risk suggests there should be caution when considering hydraulic fracturing. Our results from the cooperative solution show a decrease in hydraulic fracturing and increase in the steady state survival rate of groundwater. We also provide a Pigouvian type tax that could be imposed on natural gas developers.  相似文献   
7.
8.
The first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported. The measured flexo-ionic coefficients were found to strongly depend on the director alignment of the iLCE films and can be over 200 µC/m. This value is orders of magnitude higher than the flexo-electric coefficient found in insulating liquid crystals and is comparable to the well-developed ionic polymers (iEAPs). The shortest response times, i.e., the largest bandwidth of the flexo-ionic responses, is achieved in planar alignment, when the director is uniformly parallel to the substrates. These results render high potential for iLCE-based devices for applications in sensors and wearable micropower generators.  相似文献   
9.
In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3 +) and depth profiling (20 keV with a distribution centered at Ar1500 +) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811.26 C42H44ClN6O5S2 [M – H]) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0–200 μM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage.
Graphical Abstract ?
  相似文献   
10.
The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable, that naturally resolves this “thick–thin” conundrum. Optically thick and elec‐ tronically thin amorphous silicon “nanocoax” cells are in the range of 8% efficiency, higher than any nanostructured thin film solar cell to date. Moreover, the thin nature of the cells reduces the Staebler–Wronski light‐induced degradation effect, a major problem with conventional solar cells of this type. This nanocoax represents a new platform for low cost, high efficiency solar power. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号