首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   19篇
物理学   10篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Alkylated perfluorooctanesulfonamides are compounds of environmental concern. To make these compounds available for environmental and toxicological studies, a series of N-alkylated perfluorooctanesulfonamides and structurally related compounds were synthesized by reaction of the corresponding perfluoroalkanesulfonyl fluoride with a suitable primary or secondary amine. Perfluoroalkanesulfonamidoethanols were obtained from the N-alkyl perfluoroalkanesulfonamides either by direct alkylation with bromoethanol or alkylation with acetic acid 2-bromo-ethyl ester followed by hydrolysis of the acetate. N-Alkyl perfluorooctanesulfonamidoacetates were synthesized in an analogous way by alkylation of N-alkyl perfluoroalkanesulfonamides with a bromo acetic acid ester, followed by basic ester hydrolysis. Alternatively, N-alkyl perfluoroalkanesulfonamides can be alkylated with an appropriate alcohol using the Mitsunobu reaction. Perfluorooctanesulfonamide was synthesized from the perfluorooctanesulfonyl fluoride via the azide by reduction with Zn/HCl. All perfluorooctanesulfonamides contained linear as well as branched C8F17 isomers, typically in a 10:1 to 30:1 ratio. The crystal structures of N-ethyl and N,N-diethyl perfluorooctanesulfonamide show that the S-N bond has considerable double bond character. This double bond character results in a significant rotational barrier around the S-N bond (ΔG = 62-71 kJ mol−1) and a preferred solid state and solution conformation in which the N-alkyl groups are oriented opposite to the perfluorooctyl group to minimize steric crowding around the S-N bond.  相似文献   
2.
A conjugated main‐chain copolymer ( PBT ) consisting of bithiazole, dithieno[3,2‐b:2′,3′‐d]pyrroles (DTP), and pendent melamine units was synthesized by Stille polymerization, which can be hydrogen‐bonded (H‐bonded) with proper molar amounts of bi‐functional π‐conjugated crosslinker F (i.e., two uracil motifs covalently attached to a fluorene core through triple bonds symmetrically) to develop a novel supramolecular polymer network ( PBT/F ). The effects of multiple H‐bonds on light harvesting capabilities, HOMO levels, and photovoltaic properties of polymer PBT and H‐bonded polymer network PBT/F are investigated. The formation of supramolecular polymer network ( PBT/F ) between PBT and F was confirmed by FTIR and XRD measurements. Because of the stronger light absorption, lower HOMO level, and higher crystallinity of H‐bonded polymer network PBT/F , the solar cell device containing PBT/F showed better photovoltaic properties than that containing polymer PBT . The preliminary results show that the solar cell device containing 1:1 weight ratio of PBT/F and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) offers the best power conversion efficiency (PCE) value of 0.86% with a short‐circuit current density (Jsc) of 4.97 mA/cm2, an open circuit voltage (Voc) of 0.55 V, and a fill factor (FF) of 31.5%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
3.
Snake venom hyaluronidases known as “spreading factor” are not extensively studied. Recently, it is argued that beyond its role as a spreading factor, venom hyaluronidase (HYL) deserves to be explored as a possible therapeutic target for inhibiting the systemic distribution of venom/toxins and also for minimizing local tissue destruction. In this context, in the present study, a low-molecular weight HYL has been isolated from Bungarus caeruleus (Indian krait) venom by single step chromatography on HPLC system. The apparent molecular weight determined by SDS-PAGE is 14 ± 2 kDa, as confirmed by zymogen study and LC–MS as well. The enzyme had optimal pH 6 and temperature 37°C. The Michaelis–Menten constant (Km) was found to be 8.48 µg/mL at 37°C. The activity of purified enzyme was completely inhibited by Ba2+ metal ion and N-acetyl imidazole group-specific agents. This work yielded a highly active HYL from B. caeruleus the first one to be isolated. Further studies on its pharmacological actions will be interesting to develop lead molecules for better management of snakebite.  相似文献   
4.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
5.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   
6.
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)3:Eu phase and subsequent heat treatment at 350 and 600 °C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)3:Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)3:Eu. The strong and intense Raman peak at 489 cm−1 has been assigned to Ag mode, which is attributed to the hexagonal phase of Gd2O3. The peak at ∼360 cm−1 has been assigned to the combination of Fg and Eg modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement.  相似文献   
7.
Different phases of Eu3+ activated gadolinium oxide (Gd (OH)3, GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (CTAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)3:Eu after calcinations at 350 and 600 °C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)3, lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between 5D0 and 7F configurations. Thermoluminescence glow curves of Gd (OH)3: Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source (60CO) in the dose range 10-60 Gy at a heating rate of 6.7 °C sec−1. Well resolved glow peaks in the range 42-45, 67-76, 95-103 and 102-125 °C were observed. When γ-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in γ-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 °C and a new shouldered peak at 86 °C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed.  相似文献   
8.
The standard (p°?=?0.1?MPa) molar enthalpy of formation for solid and gaseous diphenic anhydride (2,2′-biphenyldicarboxylic anhydride, dibenz[c,e]oxepin-5,7-dione) was derived from the standard molar enthalpy of combustion, in oxygen, at T?=?298.15?K, measured by static bomb combustion calorimetry, and the standard molar enthalpy of sublimation, at T?=?298.15?K, measured by Calvet microcalorimetry: ?(258.4?±?4.9) kJ?mol?1. In addition, ab initio and density functional theory calculations have been performed at a variety of levels. The degree of aromaticity of diphenic anhydride is discussed in the context of other oxygen-containing (ring and keto) heterocycles and related carbocycles: this species is surprisingly destabilized.  相似文献   
9.
10.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号