首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2732篇
  免费   95篇
  国内免费   9篇
化学   1917篇
晶体学   30篇
力学   52篇
数学   404篇
物理学   433篇
  2022年   16篇
  2021年   31篇
  2020年   46篇
  2019年   48篇
  2018年   24篇
  2017年   32篇
  2016年   66篇
  2015年   57篇
  2014年   67篇
  2013年   111篇
  2012年   164篇
  2011年   159篇
  2010年   98篇
  2009年   77篇
  2008年   112篇
  2007年   142篇
  2006年   161篇
  2005年   154篇
  2004年   128篇
  2003年   109篇
  2002年   110篇
  2001年   43篇
  2000年   16篇
  1999年   12篇
  1998年   28篇
  1997年   28篇
  1996年   33篇
  1995年   22篇
  1994年   26篇
  1993年   36篇
  1992年   32篇
  1991年   23篇
  1990年   23篇
  1989年   34篇
  1988年   25篇
  1987年   18篇
  1986年   21篇
  1985年   47篇
  1984年   23篇
  1983年   22篇
  1982年   38篇
  1981年   43篇
  1980年   34篇
  1979年   41篇
  1978年   47篇
  1977年   25篇
  1976年   46篇
  1975年   29篇
  1974年   20篇
  1973年   24篇
排序方式: 共有2836条查询结果,搜索用时 16 毫秒
1.
TGA, DTA and DSC analyses indicate that benzotriazole is significantly more stable thermally than 1,2,3-triazole.  相似文献   
2.
Electroactive conducting polymers for corrosion control   总被引:1,自引:0,他引:1  
There is an intensive effort underway to develop new corrosion control coatings for structural metals. In part, this effort has been motivated by the desire to replace chromium(VI)-containing coatings currently used for corrosion control of iron and aluminum alloys. Cr(VI) has been shown to be hazardous to the environmental and to human health, and its use in many countries will be sharply curtailed in the coming years. Electroactive conducting polymers (ECPs) represent a class of interesting materials currently being explored for use in corrosion control coating systems, possibly as a replacement for Cr(VI)-based coatings. The electroactivity and the electronic conductivity (or semiconductivity) of ECPs set them apart from traditional organic coatings. As with chromate, interesting and potentially beneficial interactions of ECPs with active metal alloys such as steel and aluminum are anticipated, with concomitant alteration of their corrosion behavior. A review of this active research area will be presented in two parts. Here in Part 1, a general introduction to the topic of corrosion control by ECPs will be presented, including an overview of corrosion and its control by traditional methods, an introduction to ECPs and their properties, and a discussion of the processing issues surrounding the use of ECPs as coatings. Part 1 also includes a review of the literature on the use of ECPs as coatings (or components of coatings) on non-ferrous active metals, principally aluminum and aluminum alloys, although some work on zinc, copper, silver, titanium and silicon will also be described. In Part 2 of this review (to be published in the next issue of this journal), the rather extensive literature on the use of ECPs for the corrosion control of ferrous alloys (steels) will be reviewed. Electronic Publication  相似文献   
3.
A covering array CA(N;t,k, v is an N × k array such that every N × t subarray contains all t‐tuples from v symbols at least once, where t is the strength of the array. Covering arrays are used to generate software test suites to cover all t‐sets of component interactions. The particular case when t = 2 (pairwise coverage) has been extensively studied, both to develop combinatorial constructions and to provide effective algorithmic search techniques. In this paper, a simple “cut‐and‐paste” construction is extended to covering arrays in which different columns (factors) admit different numbers of symbols (values); in the process an improved recursive construction for covering arrays with t = 2 is derived. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 124–138, 2006  相似文献   
4.
Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood. Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaClw/v. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy. Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1–6.7 ± 3.4 kdynes/cm2, P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28–182 ± 23 106/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio-nano interface enables rational ME design for in vivo applications.  相似文献   
5.
Reduced rank regression assumes that the coefficient matrix in a multivariate regression model is not of full rank. The unknown rank is traditionally estimated under the assumption of normal responses. We derive an asymptotic test for the rank that only requires the response vector have finite second moments. The test is extended to the nonconstant covariance case. Linear combinations of the components of the predictor vector that are estimated to be significant for modelling the responses are obtained.  相似文献   
6.
The concept of strong interactions need not be limited to the sector of physics taken by QCD. While this domain is investigated by RHIC, LHC will be able to probe potential new strong interactions simultaneously: Finding the precise mechanism for electroweak symmetry breaking is one of the prime problems of physics. Intricately linked to this point is the question after the true nature or even the existence of the Higgs boson. Here, we present stronly interacting theories providing an explanation for the hierarchy problem and leading to a light composite Higgs boson, favoured by experimental data. Our variation of the standard model is consistent with precision data. We achieve this accordance by using technifermions in a higher representation of their gauge group. Anomaly conditions require at least one extra lepton family for some of the theories whereby they contain a natural dark matter candidate. We can accurately determine the masses of said leptons from experimental data.  相似文献   
7.
This paper describes an application of statics to geometrical proofs in the classroom. The aim of the study was to find out whether the use of concepts and arguments from statics can help students understand and produce proofs of geometrical theorems. The two theorems studied were (1) that the medians in a triangle meet at a single point which is the centre of gravity of the triangle, and (2) the Varignon theorem, that the lines joining the midpoints of successive sides of a quadrilateral form a parallelogram. The classroom experiment showed that most students were successful in using arguments from statics in their proofs, and that they gained a better understanding of the theorems. These findings lend support to the claim that the introduction of statics helps students produce proofs and grasp their meaning.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号