首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1014篇
  免费   57篇
  国内免费   4篇
化学   877篇
晶体学   5篇
力学   18篇
数学   85篇
物理学   90篇
  2023年   13篇
  2022年   7篇
  2021年   20篇
  2020年   34篇
  2019年   23篇
  2018年   29篇
  2017年   11篇
  2016年   32篇
  2015年   42篇
  2014年   38篇
  2013年   59篇
  2012年   83篇
  2011年   109篇
  2010年   54篇
  2009年   38篇
  2008年   82篇
  2007年   72篇
  2006年   64篇
  2005年   53篇
  2004年   61篇
  2003年   41篇
  2002年   30篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   5篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1979年   4篇
  1978年   2篇
  1937年   1篇
排序方式: 共有1075条查询结果,搜索用时 15 毫秒
1.
2.
3.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
4.
Lipid A is a major compound of the outer membrane of gram‐negative bacteria and is a key factor of bacterial virulence. As lipid A's structure differs among bacterial species and varies between strains of the same species, knowing its modifications is essential to understand its implications in the infectious process. To analyze these lipids, matrix‐assisted laser desorption ionization‐mass spectrometry (MALDI‐MS) is a well‐suited method that is fast and efficient. However, there are limitations with the matrix and additives used, such as the suppression of signal or prompt fragmentations that could give a false overview of lipid A composition in biological samples. For a comprehensive analysis of the entire lipid A species present in a sample, we tested 16 matrices and 11 additives on two commercial lipids A. The first commercial one contains single phosphorylation group, and the second contains two phosphorylation and two ketodeoxyoctonic acid (KDO) groups. The lipid A containing KDO groups was essentially detected by the 3‐hydroxypicolinic acid (3‐HPA) matrix, whereas the monophosphorylated lipid A could be detected by 13 matrices out of the 16. We also demonstrated that the signal of diphosphorylated lipid A can be enhanced with the use of additives in the matrix. Our study indicated that the best conditions to obtain a clear signal of both lipids A without prompt fragmentation was the use of 3‐HPA with 10mM trifluoroacetic acid (TFA).  相似文献   
5.
A series of carbon-coated, nitrogen-doped titanium dioxide photocatalysts was produced and characterized. N-doped TiO2 powder samples were prepared using a sol-gel method and subsequently used for making doped-TiO2 thin films on glass substrates. Carbon layers were coated on the films by a thermal decomposition method using catechol. Diffuse reflectance spectra and Mott-Schottky analyses of the samples proved that nitrogen doping and carbon coating can slightly lower the band gap of TiO2, broaden its absorption to visible light and enhance its n-type character. According to photocatalytic tests against model contaminants, carbon-coated nitrogen-doped TiO2 films have better performance than simple TiO2 on the degradation of Rhodamine B dye molecules, but are poorly effective for degrading 4-chlorophenol molecules. Several possible explanations are proposed for this result, supported by scavenging experiments. This reveals the importance of a broad substrate scope when assessing new photocatalytic materials for water treatment, something which is often overlooked in many literature studies.  相似文献   
6.
Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

Understanding and controlling molecular recognition mechanisms at a chiral solid interface has been addressed in metal–organic framework catalysts for the asymmetric transfer hydrogenation reaction.  相似文献   
7.
X-ray astronomy and ground-based atomic physics have a long history of fruitful collaboration: Sound understanding of the underlying atomic physics is the key to reliable interpretation of the spectra from celestial sources; conversely, astronomical spectra have been used to benchmark and advance atomic physics. This interplay is about to become even more important as we enter a new era of high-resolution X-ray astrophysics with large effective collection area. Although high-resolution observations with the gratings on the Chandra and XMM-Newton observatories continue to drive new science, upcoming planned and proposed missions will open up new discovery space in the near future that is currently challenging to access: high-resolution spectroscopy on extended sources, in the Fe K band, and on short time scales. This review summarizes open questions in these areas and the design parameters for the Hitomi, XRISM, Athena, and Arcus observatories. The expected high quality of spectra taken with these observatories puts new constraints on the accuracy of atomic reference data required to take full advantage of the diagnostic potential of these spectra.  相似文献   
8.
Photopolymerization is a phenomenon that is the basis of much of today's microfabrication technology and intense research is conducted to improve its control and the characteristics of end products for a variety of applications. The design of microscopic structures often relies on the accurate knowledge and modeling of photopolymer's behavior upon exposure, i.e. the Dill parameters, for each radiation species of interest and therefore the development of flexible characterization techniques is of great importance. SU‐8 is a popular compound that is representative of a whole class that relies on cationic polymerization, where an acid is obtained via photolysis of an onium salt during exposure. Here we report on the observation of SbF6? via laser desorption mass spectrometry on SU‐8 exposed to UV light at the wavelength of 365 nm and demonstrate that the yield of this counter‐anion as a function of exposure is consistent with the Dill C parameter value available in the literature. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 967–972  相似文献   
9.
The chalcogenido indates K6In2Q6 (Q = S, Se, Te) were synthesized from melts of the pure elements at a maximum temperature of 700 °C. All three potassium salts contain dinuclear units [In2Q6]6– of two edge-sharing [InQ4] tetrahedra. The sulfido and the selenido indate are isotypic and crystallize in the K6Mn2O6-type structure [monoclinic, space group P21/c, a = 784.32(9)/809.32(3), b = 1274.58(14)/1322.37(4), c = 836.48(9)/870.53(3) pm, β = 97.900(2)/97.5877(8)°, Z = 2, R1 = 0.0123/0.0109; for Q = S/Se]. The tellurido indate K6In2Te6 crystallizes in a new orthorhombic structure type [space group Pnma, a = 1793.70(12), b = 1491.55(11), c = 837.40(6) pm, Z = 4, R1 = 0.0157]. In this structure, the telluride anions form a hexagonal close packing, in which K+ cations occupy all octahedral voids; the In3+ ions take 1/6 (but always adjacent) tetrahedral voids. This structure-chemical relation to the h.c.p. packing, which is similarly found for most of the sodium dimetallates (e.g. Na6Fe2S6), is substantiated by a full crystallographic group-subgroup tree. The crystal chemistry of the new indates is discussed and compared with that of alkali chalcogenido metallates(III) of Fe, Al and Ga containing [M2Q6]6– dimers, which overall form as many as ten different structure types. DFT band structure calculations of the three title compounds exhibit bandgaps, which continuously decrease from the S to the Te compound and which are also in accordance with the pale yellow (S), bright yellow (Se) and red-brown (Te) color of the compounds. The chemical bonding in the salts and within the metallate anion is discussed on the basis of the partial DOS and a Bader analysis of the calculated electron density.  相似文献   
10.
Functionalization of 2,1,3-benzothiadiazole (BTD) with thiols at C-5 position remains low explored. Moreover, the arylthiol-substitutions at this position are also unexplored and can not be found by a SN2 or SN1 reaction. In this sense, herein we present a new palladium-catalyzed methodology for a wide variety of unpublished 5-arylsulfanyl-benzo-2,1,3-thiadiazole derivatives synthesis with moderate to high yields using a low catalytic loading of Pd(L-Pro)2 as low-coast, and efficient catalyst in low reaction time. Besides, we concluded that the pKa of thiol species has an important role in this catalysis, mainly in the CMD like catalytic cyclo process, which strongly interferes in the reaction yields. Furthermore, arylsulfanyl-benzo-2,1,3-thiadiazoles derivatives have been assessed (in vitro) as potential acetylcholinesterase inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号