首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
化学   87篇
数学   1篇
物理学   2篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   3篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
Synthesis and characterization of 4-{(E)-[(5-bromo-2-hydroxyphenyl)methylidene]amino}-N-carbamimidoylbenzene-1-sulfonamide(SA) and its composites with graphene(SA-GF) were performed. Compound SA and SA-GF were characterized by FTIR and 1H NMR. The GF dispersion in the composites was analyzed by means of scanning electron microscopy(SEM) for morphology. Thermal properties of SA and nanocomposites were investigated using differential thermal analysis(DTA) and thermogravimetric analysis(TGA). The optimum electrical conductivity of the new sulfonamide-based Schiff base was determined to be 1.78×10–5 S/cm at a frequency of 9923 Hz, an applied voltage of –19 V, a mass fraction of 9.38% for graphene loading using a central composite design in the response surface methodology. The significance of the selected parameters(frequency, voltage and GF amount) in the model was determined by the analysis of variance(ANOVA). The results showed that frequency and graphene loading represent important model terms and have considerable effects on the conductivity of SA.  相似文献   
2.
Phenoxy- and naphthoxy-substituted bisphenol-bridged cyclic phosphazenes were synthesized in 2 steps and their thermal, photophysical, and electrochemical properties were investigated. The structures of the cyclic phosphazene compounds were determined by ESI-MS mass spectrometry and 1 H, 13 C, and 31 P NMR spectroscopies. The photophysical studies of phenoxy- and naphthoxy-substituted bridged cyclophosphazenes were investigated by means of absorption and fluorescence spectroscopies in different solvents. Thermal and electrochemical properties of the target compounds were also studied. Furthermore, the excimer emissions through intramolecular interactions in solution and in solid state were investigated by fluorescence spectroscopy and the theoretical calculations were performed in detail using DFT.  相似文献   
3.
Long-chain aliphatic amines such as (S,Z)-heptadec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engineered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octylnonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer–Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g−1 dry cells with conversions up to 90 %. Therefore, this study contributes to the preparation of industrially relevant long-chain aliphatic chiral amines and esters from renewable fatty acid resources.  相似文献   
4.
Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.  相似文献   
5.
This work reports the one‐pot enzymatic cascade that completely converts l ‐arabinose to l ‐ribulose using four reactions catalyzed by pyranose 2‐oxidase (P2O), xylose reductase, formate dehydrogenase, and catalase. As wild‐type P2O is specific for the oxidation of six‐carbon sugars, a pool of P2O variants was generated based on rational design to change the specificity of the enzyme towards the oxidation of l ‐arabinose at the C2‐position. The variant T169G was identified as the best candidate, and this had an approximately 40‐fold higher rate constant for the flavin reduction (sugar oxidation) step, as compared to the wild‐type enzyme. Computational calculations using quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) showed that this improvement is due to a decrease in the steric effects at the axial C4‐OH of l ‐arabinose, which allows a reduction in the distance between the C2‐H and flavin N5, facilitating hydride transfer and enabling flavin reduction.  相似文献   
6.
7.
8.
The substrate scope of a steroid monooxygenase (STMO) from Rhodococcus rhodochrous DSM 43269 was investigated for a large range of different ketone substrates. These studies revealed that this enzyme not only oxygenates steroids, but also ketone moieties of a series of other open-chain ketones, such as cyclohexyl methyl ketone, cyclopentyl methyl ketone, and 3-acetylindole. Furthermore, the STMO catalyzed the oxygenation of cyclobutanone derivatives. Comparative biotransformations with recombinant Escherichia coli resting cells harboring the STMO, the cycloalkanone monooxygenase (CAMO) from Cylindrocarpon radicicola or the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus revealed that the STMO is enantiodivergent compared to the CHMO-type. Moreover, the STMO resulted in a higher enantiomeric excess of the product lactones compared to the known BVMOs of the same enantiopreference, such as cyclopentanone monooxygenases.  相似文献   
9.
Sorting out: Protein engineering of lipase CAL-A led to the discovery of mutants with excellent chemoselectivity for the removal of trans and saturated fatty acids from partially hydrogenated vegetable oil. These fatty acids, identified as a major risk factor for human health, can now be removed by enzyme catalysis.  相似文献   
10.
Baeyer-Villiger monooxygenases (BVMOs) are useful enzymes for organic synthesis as they enable the direct and highly regio- and stereoselective oxidation of ketones to esters or lactones simply with molecular oxygen. This contribution covers novel concepts such as searching in protein sequence databases using distinct motifs to discover new Baeyer-Villiger monooxygenases as well as high-throughput assays to facilitate protein engineering in order to improve BVMOs with respect to substrate range, enantioselectivity, thermostability and other properties. Recent examples for the application of BVMOs in synthetic organic synthesis illustrate the broad potential of these biocatalysts. Furthermore, methods to facilitate the more efficient use of BVMOs in organic synthesis by applying e.g. improved cofactor regeneration, substrate feed and in situ product removal or immobilization are covered in this perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号