首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   2篇
化学   54篇
晶体学   1篇
力学   3篇
数学   4篇
物理学   9篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  1997年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of 2-naphthoxymethyl-substituted polystyrenes with different contents of naphthoxymethyl side groups were investigated. The polymer films exhibited good optical transparency in the visible light region (400–700 nm). The LC cells made from the unrubbed films of polymers having more than 57 mol%?of 2-naphthoxymethyl containing monomeric units showed homeotropic LC alignment with a high pretilt angle of about 90o. Good electro-optical characteristics, such as the threshold voltage, response time, voltage holding ratio and residual DC voltage were observed for the LC cells fabricated with the polymer having 100 mol%?of 2-naphthoxymethyl containing monomeric units as an LC alignment layer.  相似文献   
2.
We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).  相似文献   
3.
A hydrogen molecule entrapped in the cages of icy hydrogen hydrate is confined in host water framework and thus behaves unlike pure solid or liquid hydrogen. The gamma-irradiated hydrogen radicals are for the first time observed from ESR and solid-state MAS 1H NMR spectra to stably exist in the icy hydrate channels without any collapse of the host framework, confirming the chemical shift consistency of ionized hydrogen derivatives. We discuss the confined icy hydrate channels, which can act as potential storage sites for simultaneously imprisoning both molecular and ionized hydrogen and further as icy nanoreactors.  相似文献   
4.
We first report here that under strong surrounding gas of external CH4 guest molecules the sII and sH methane hydrates are structurally transformed to the crystalline framework of sI, leading to a favorable change of the lattice dimension of the host-guest networks. The high power decoupling 13C NMR and Raman spectroscopies were used to identify structure transitions of the mixed CH4 + C2H6 hydrates (sII) and hydrocarbons (methylcyclohexane, isopentane) + CH4 hydrates (sH). The present findings might be expected to provide rational evidences regarding the preponderant occurrence of naturally occurring sI methane hydrates in marine sediments. More importantly, we note that the unique and cage-specific swapping pattern of multiguests is expected to provide a new insight for better understanding the inclusion phenomena of clathrate materials.  相似文献   
5.
Methyl azide (CH(3)N(3)) might be a potential precursor in the synthesis of prebiotic molecules via nonequilibrium reactions on interstellar ices initiated by energetic galactic cosmic rays (GCR) and photons. Here, we investigate the effects of energetic electrons as formed in the track of cosmic ray particles and 193 nm photons with solid methyl azide at 10 K and the inherent formation of methanimine (CH(2)NH), hydrogen cyanide (HCN), and hydrogen isocyanide (HNC). We present a systematic kinetic study and outline feasible reaction pathways to these molecules. These processes might be also important in solar system analogue ices.  相似文献   
6.
7.
The technique of surface plasmon-coupled emission (SPCE) involves the coupling of light which is emitted from a fluorophore into the surface plasmon of an adjacent thin metal film, giving rise to highly directional emission. We have combined the advantages of SPCE with the high light collection efficiency of supercritical angle fluorescence by carrying out an immunoassay on a paraboloid array biochip in the absence of the conventional SPCE spacer layer normally used to minimize metal quenching of the fluorescence. In this work, we have successfully demonstrated an SPCE-based assay by utilizing the protein assay layer as the spacer layer. A novel 3 × 3 injection molded polymer biochip with paraboloid elements was used. The paraboloid elements served to enhance the light collection efficiency while the top surface was coated with a gold layer to use excitation of surface plasmons and detection of SPCE emission. Theoretical modeling of the gold-protein layer structure showed that the surface plasmon resonance angles were located in the detection range of the paraboloid biochip. The polarization dependence of SPCE emission was also demonstrated. Finally, a human IgG sandwich immunoassay was carried out which exhibited a limit of detection of ~10 ng/ml using 3σ. The results demonstrate the potential of the SPCE-based paraboloid array biochip as a novel platform for high-throughput analysis of biomolecular interactions.  相似文献   
8.
Wetting and dewetting transitions play a central role in controlling the hydrophobicity of the lining of biological channels in order to regulate aqueous solution permeation. Understanding of the operational characteristics of biological nanochannels led to experimental efforts to mimic their behavior and to achieve potential-induced, repeatedly-switchable wettability transitions in synthetic nanochannels in the early 2010s. Since then, research has identified conditions needed to produce reversible wettability transitions using a number of different environmental stimuli—such as light, pH, and electrostatic charge—in addition to potential. Furthermore, nascent understanding of the underlying phenomena in synthetic nanochannels was rapidly followed by practical applications, including oil–water separations, drug release, and electroactive flow control based on switchable wettability. More practical applications are being developed continuously, as the physical and chemical principles that govern hydrophobic gating at the nanoscale are further elucidated, making it possible to exploit wettability as a design element in nanofluidic systems.  相似文献   
9.
A one-dimensional heat conduction equation with time- and temperature-dependent heat sources was employed to study the steady-state and transient response of a composite superconductor subjected to a thermal disturbance. An integral formulation was used to solve the steady-state problem of current redistribution and heat generation. The results of the integral formulation are compared with those of an analytical solution. The two solutions agree with each other except when the analytical solution fails as the temperature in the superconductor begins to exceed the critical temperature. Transient solutions were obtained by the finite-difference technique and the results are compared with a known analytical solution. Results of numerical calculations of the transient response of a composite superconductor subjected to an initial pulsed disturbance are presented. It is demonstrated that the superconductor can switch between the superconducting and the current-sharing state. The transient response and the stability of the composite conductor depend on the magnitude and duration of the disturbance, the dimensionless temperature θ*, and the dimensionless parameter φ. Received on 18 November 1996  相似文献   
10.
Yuk JS  Gibson GN  Rice JM  Guignon EF  Lynes MA 《The Analyst》2012,137(11):2574-2581
We have developed a novel dual mode immunoassay platform that combines the advantages of real-time, label free measurement of surface plasmon resonance (SPR) and the highly directional surface plasmon-coupled emission (SPCE) using a gold grating-based sensor chip. Since only fluorophore-labeled analyte molecules that are close to the metal surface of the sensor chip will couple to the surface plasmon, SPCE detection is highly surface-specific leading to background suppression and increased sensitivity. Theoretical calculations were done to find SPR and SPCE angles for a sensor chip optimized for Alexa Fluor 647. We have confirmed the SPR and SPCE responses on the dual mode sensor chip using Alexa Fluor 647 labeled anti-mouse IgG. Signal fluctuation of the dual mode sensor chip reader was below 1.2% and 0.8% for SPR and SPCE, respectively. The SPR response in this configuration showed a minimum detection level of 1 μg ml(-1), and the SPCE response showed a minimum detection level of 1 ng ml(-1) for the same sample. A range of human IgG concentrations in human serum was also analyzed with the dual mode sensor chip. The SPCE measurement is more sensitive than the SPR real-time measurement, and substantially extends the dynamic range of the assay platform, as well as enabling independent measurements of co-localized analytes on the same sensor chip region of interest. Since this assay platform is capable of measuring more than 1000 spatially encoded regions of interest on a 1 cm(2) sensor chip, it has the potential for high-content analyses of biological samples with both research and clinical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号