首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   224篇
  国内免费   213篇
化学   313篇
晶体学   13篇
力学   162篇
综合类   13篇
数学   105篇
物理学   454篇
  2024年   2篇
  2023年   18篇
  2022年   28篇
  2021年   23篇
  2020年   14篇
  2019年   25篇
  2018年   28篇
  2017年   19篇
  2016年   28篇
  2015年   30篇
  2014年   47篇
  2013年   34篇
  2012年   38篇
  2011年   48篇
  2010年   37篇
  2009年   49篇
  2008年   31篇
  2007年   46篇
  2006年   48篇
  2005年   50篇
  2004年   45篇
  2003年   32篇
  2002年   24篇
  2001年   33篇
  2000年   14篇
  1999年   23篇
  1998年   9篇
  1997年   18篇
  1996年   16篇
  1995年   17篇
  1994年   8篇
  1993年   15篇
  1992年   25篇
  1991年   13篇
  1990年   20篇
  1989年   26篇
  1988年   10篇
  1987年   8篇
  1986年   16篇
  1985年   17篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1961年   2篇
  1960年   1篇
  1959年   2篇
  1958年   1篇
  1956年   2篇
  1954年   1篇
排序方式: 共有1060条查询结果,搜索用时 15 毫秒
1.
为进一步提高周向多爆炸成型侵彻体战斗部的毁伤效能,结合数值模拟方法,设计了一种爆炸成型杆式侵彻体战斗部。基于复合装药的爆轰加载控制方式,使得药型罩成型为密实的杆式侵彻体,通过调整半预制药型罩的斜置角度,对毁伤元的旋转速度施加控制,进而提高其空中飞行姿态的稳定性,提高毁伤元的毁伤威力。对不同斜置角度的战斗部原理样机进行了静爆实验,实验结果与模拟结果的对比表明,半预制药型罩斜置角度为1.5°时,爆炸成型杆式侵彻体的着靶姿态最好,对45钢靶板侵彻深度最大。通过药型罩斜置,在保证杆式侵彻体成型质量的同时,可以有效提高侵彻体的侵彻威力。  相似文献   
2.
合成氨工业是国家能源与战略的基石,是化学工业的支柱产业,随着国家产业升级与转型,对合成氨工业的能耗提出了较为严厉的要求.钌基催化剂被誉为继铁催化剂后的第二代氨合成催化剂,与铁催化剂相比,钌基催化剂在低温和低压下具有优异的催化性能.炭材料因具有低成本、高比表面积以及电子传输和热传输等独特性能,比其它化合物如MgO,Al_2O_3和BN等更适合作为Ru催化剂的载体,而且也是除铁催化剂外唯一已工业化的载体.虽然炭负载钌催化剂的甲烷化是不可避免的,但BP公司使用石墨化碳作为载体成功地解决了这个问题,并实现了工业化.为了进一步提高钌基催化剂性能,对钌炭催化剂的结构设计尤为重要.中孔炭(MC)孔隙结构发达,可以为钌纳米粒子的分散提供空间,从而有效提高金属钌的利用率,中孔炭负载的钌基催化剂在合成氨反应中表现出优异的催化性能.传统负载型钌基催化剂的制备一般采用浸渍法,虽然可获得高分散的Ru纳米粒子,但其只会分布在载体的表面,因此在反应过程中就容易发生金属纳米粒子的团聚和流失,大大降低使用寿命.而随着新材料制备技术的发展,对催化剂的设计合成方法的研究也越来越多.当金属纳米粒子被镶嵌在载体的壁上时,金属和载体之间就具有较强的相互作用,因而可以稳定金属纳米粒子.本文通过蔗糖原位炭化法将Ru纳米颗粒半嵌入在炭材料中制备镶嵌式Ru-MC催化剂,并采用HRTEM, CO化学吸附等手段系统研究了镶嵌式Ru-MC催化剂与传统浸渍法制备的负载型Ru/MC催化剂之间的差异.采用等体积浸渍法添加Ba和K助剂制备催化剂Ba-K/Ru-MC和Ba-Ru-K/MC.和Ba-Ru-K/MC催化剂相比, Ba-K/Ru-MC催化剂上钌炭相互作用力增强,不但有效提高了钌催化剂的催化活性,而且提高了该催化剂的抗甲烷化能力,从而提高了氨合成条件下催化剂的稳定性和使用寿命.采用该方法制备的钌基催化剂在400°C, 10000 h~(-1), 10 MPa和H_2/N_2=3.0的反应条件下,氨合成反应速率可以达到133 mmol/(g·h),其性能远高于目前报导的钌基催化剂和传统的熔铁催化剂.  相似文献   
3.
4.
离子色谱作为一种新型高效液相色谱技术, 最初主要应用于测定样品中的阴阳离子含量, 如今发展为应用于有机酸、生物胺、糖类等化合物的组成及含量测定. 离子色谱法具有操作简便、灵敏度高以及选择性好等优点, 因此, 目前离子色谱法已在能源、环境、地质、食品、药物等领域得到了广泛应用. 总结了近年来离子色谱在中药金属离子、无机阴离子、有机酸、糖类成分的研究进展, 为离子色谱法分析中药化学成分提供了参考.  相似文献   
5.
为了使气浮支承的承载力动态可调,设计了一种可变节流高度气浮支承. 通过建立气浮支承计算流体动力学(Computational Fluid Dynamics,CFD)模型,利用CFD动网格技术来模拟小孔节流器的运动,研究小孔节流器的结构参数、运动参数及气浮支承的工作参数对可变节流高度气浮支承动态性能的影响. 结果表明:通过调节小孔节流器的节流高度可以明显改变气浮支承的承载力;在只考虑单一变量的前提下,气浮支承承载力的波动量随着小孔节流器的运动幅值、运动频率、节流高度、直径和气浮支承供气压强的增加而增加,但随着气膜厚度的增大而减小;当小孔节流器直径较小时,随着小孔节流器运动频率的增加,气浮支承动刚度的增幅很小,但当小孔节流器直径增大时,随着小孔节流器运动频率的增加,气浮支承动刚度的增幅会明显变大.   相似文献   
6.
为了研究航天复合材料压力容器内衬与复合材料双层壳体的力学特性,通过优化复合材料网格理论算法,针对钛合金内衬(TC4)/碳纤维(T1000GB)缠绕柱形复合材料压力容器进行了应力应变特性分析.以纤维预紧应力为自变量,研究其对内衬/纤维双层壳体在预紧压力、工作压力、验证压力和爆破压力下应力的影响,提出了优化设计的解析解法,指出内衬与复合层力学特性对容器性能的影响机理,为结构设计和同类产品设计提供了计算方法和理论指导.  相似文献   
7.
为评估基于单矢量水听器的方位估计能力,在黄海海域对矢量水听器进行实验。矢量水听器吊放于接收船尾部,采用平均声强器和复声强器方位估计方法,并提出以概率密度值最大的方位角作为目标方位估计值的具体处理准则,对恒定方向、匀速行驶的目标船方位进行估计,并求出两种方法的方位估计误差。结果表明,水听器布放深度10 m时,对正横距离为0.42 km的航速10 kn的目标船,平均声强器方法的水平方位角估计误差18°,极角估计误差为5°,可以在离目标船最远1.17 km处估计其方位;复声强法的水平方位角估计误差为13°,极角估计误差为8°,可以在离目标船最远2.35 km处估计其方位。在有接收船的噪声干扰情况下,复声强器比平均声强器方法估计的方位更准确,可以对更远处的噪声源进行方位估计。  相似文献   
8.
在神光Ⅲ主机装置上,利用已经建成的两个激光束组,开展了激光间接驱动内爆物理磨合实验,是神光Ⅲ主机装置首次出中子实验。实验采用1400μm×2100μm黑腔,500μm的塑料靶丸充1 MPa的DD燃料,激光从黑腔两端55°注入。实验获得的最高中子产额为9.7×108。实验结果表明,实验黑腔的耦合效率约为50%;使用的黑腔偏长,靶丸被压缩为"薄饼形";中子产额和激光能量正相关;中子发射峰值时刻主要依赖于烧蚀层厚度。  相似文献   
9.
近年来,随着再生医学的快速发展,组织工程技术再造人体组织器官被广泛的关注和研究。其中对加速创伤修复的敷料材料设计非常重要,其结构性质严重影响了再生组织的形态和效果。天然高分子壳聚糖具有广谱抗菌、强效止血作用,无毒性降解物,具有良好的生物相容性、生物活性和生物可降解性良好,能够有效地促进创面愈合和组织修复再生,在生物医用敷料领域具有广阔的应用前景。本文主要综述近年来壳聚糖基创伤敷料设计成型方法,并讨论不同的成型工艺及负载不同抗菌剂的敷料性能及用途差异。以期能够为设计和开发新型壳聚糖基抗菌型创伤敷料材料提供重要参考。  相似文献   
10.
冷冻靶是实现惯性约束聚变高能量增益的重要靶型。冷却臂是冷冻靶的重要部件之一,通过它将冷源与铝套筒相连接,用于获得靶丸内均匀氘氚冰层时所需的精确温度,同时冷却臂也用于均匀夹持铝套筒。首先测试分析了硅材料在深低温下的热传导系数,表明硅材料在该温区具有优异的热传导能力。研究了硅冷却臂结构参数对冷却臂温度场分布的影响。分析不同晶向硅冷却臂周向均匀夹持铝套筒的特性,提出基于(111)晶向硅片研制冷却臂。研究了冷却臂力臂夹持力和共振频率,并对硅冷却臂的热-结构耦合进行分析。最后设计具有16个夹持力臂的二级分叉结构的冷却臂。基于微电子机械系统技术研制了硅冷却臂样机,并测试了冷却臂的侧壁垂直度和力学特性。将研制的硅冷却臂与铝套筒进行装配,表明冷却臂中力臂的力学特性能够实现对套筒的夹持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号