首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
化学   3篇
晶体学   2篇
综合类   2篇
  2020年   1篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
在现有方法基础上对沉积物中磺胺类、喹诺酮类、大环内脂类和四环素类抗生素的提取、富集、净化以及仪器分析方法进行了优化。以EDTA-Mcllvaine缓冲溶液与乙腈(V:V,1:1)混合液作为提取液,利用超声波细胞破碎仪进行超声提取,串联强阴离子交换柱(SAX)和HLB固相萃取柱进行固相萃取(SPE),通过超高效液相/串联质谱(UPLC-MS/MS)测定沉积物中抗生素的含量。抗生素基质加标回收率在56.4%~110%,相对标准偏差为1.1%~24.3%,方法检出限0.0055~0.716 ng/g。本方法有效地提高了沉积物中抗生素的提取效率,并应用于实际样品的测定中。  相似文献   
2.
为了研究水稻线粒体tRNATrp的种属特异性元件,在野生型水稻线粒体tRNATrp的基础上,设计并完成了3种向人tRNATrp的突变,体外转录并用枯草杆菌和人这两种不同种属来源的色氨酰-tRNA合成酶(TrpRS)测定了这些 tRNATrp 分子的氨酰化活力(Kcat/KM).结果表明,与野生型水稻线粒体tRNATrp相比, 3个突变体被人TrpRS氨酰化的活力分别提高了354、407和803倍,其中以PMPH3(水稻线粒体tRNATrp的氨基酸接受茎的C2-G71和G3-C70都突变为人tRNATrp的氨基酸接受茎的相应部位)的氨酰化活力改变最大.而3个突变体对B.subtilis TrpRS氨酰化活力有进一步负影响,氨酰化活力微弱.说明水稻线粒体tRNATrp氨基酸接受茎上的第2个碱基对C2-G71和第3个碱基对G3-C70在人色氨酰-tRNA合成酶识别过程中有着极为重要的作用,是水稻线粒体tRNATrp的种属特异性元件.  相似文献   
3.
近年发展起来的制备功能薄膜的电化学沉积技术,是软溶液工艺路线(Soft Solution Processing简记为SSP)中的重要技术[1]。与传统的薄膜制备技术相比,电化学沉积技术在反应控制、形貌控制、沉积速度、能量消耗、环境影响、薄膜晶化以及沉积设备等方面都有较明显的优势,同时避免了  相似文献   
4.
佛手挥发油的化学成分   总被引:25,自引:0,他引:25  
用色谱-质谱-计算机联用法对佛手挥发油的化学成分和相对含量进行了系统分析,得到67种组分,鉴定出31个组分,主要组分是柠檬烯(48.4%)、1-甲基-2-(1-甲乙基)-苯(30.8%)。  相似文献   
5.
采用恒电流电化学技术直接在金属钼片上制备了具有白钨矿结构的钼酸锶(SrMoO4)多晶薄膜,着重在实验上研究了薄膜的晶体生长特性。研究表明,采用电化学技术制备SrMoO4晶态薄膜时,薄膜的生长具有如下特点:(1)晶核生成需要一定的时间,但晶核一旦生成,其形貌就比较完整;(2)晶核和晶粒优先选择在基体缺陷(折叠、划痕、缺陷、凹凸不平等)处生长和堆砌;(3)基体上晶粒的数量随着制备时间的增加而增加,晶粒的尺寸随着时间的增加而长大,晶粒逐渐从基体表面上的稀疏分布直到布满整个基体;(4)晶粒的{111}面总是显露的;(5)在薄膜生长的整个过程中,晶粒基本上以其c轴垂直于薄膜基体表面进行的。上述研究结果对进一步认识薄膜的晶体生长和利用电化学法制备晶态薄膜都具有重要意义。  相似文献   
6.
采用室温原电池电化学技术在钨衬底上制备出了具有发光性能的BaWO4、SrWO4、CaWO4薄膜,利用X射线衍射仪、扫描电镜、荧光光谱仪对样品进行了分析,对薄膜的发光性能进行了研究。XRD分析表明,所制备的钨酸盐薄膜是高度结晶的,呈四方结构;SEM观察表明,在原电池条件下,这些晶体以四方锥形的习性生长。室温下的荧光性能测试表明,所制备的BaWO4、SrWO4、CaWO4薄膜在220nm至240nm的光激发下,均在450nm附近出现一个蓝光发射带,而BaWO4薄膜还在310nm的光激发下,在400nm及590nm附近出现额外的发射带,形成从400~590nm的准连续发射光谱。研究表明,原电池电化学技术为某些功能陶瓷薄膜的制备提供了一条环境协调的、廉价便利的工艺新路线。  相似文献   
7.
为了研究水稻线粒体tRNA^Trp的种属特异性元件,在野生型水稻线粒体tRNA^Trp的基础上,设计并完成了3种向人tRNA^Trp的突变,体外转录并用枯草杆菌和人这两种不同种属来源的色氨酰-tRNA合成酶(TrpRS)测定了这些tRNA^Trp分子的氨酰化活力(Kcat/KM).结果表明,与野生型水稻线粒体tRNA^Trp相比,3个突变体被人TrpRS氨酰化的活力分别提高了354、407和803倍,其中以PMPH3(水稻线粒体tRNA^Trp的氨基酸接受茎的C2-G71和G3-C70都突变为人tRNA^Trp的氨基酸接受茎的相应部位)的氨酰化活力改变最大.而3个突变体对B.subtilis TrpRS氨酰化活力有进一步负影响,氨酰化活力微弱.说明水稻线粒体tRNA^Trp氨基酸接受茎上的第2个碱基对C2-G71和第3个碱基对G3-C70在人色氨酰-tRNA合成酶识别过程中有着极为重要的作用,是水稻线粒体tRNA^Trp的种属特异性元件.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号