首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4306篇
  免费   99篇
  国内免费   19篇
化学   3316篇
力学   54篇
综合类   1篇
数学   87篇
物理学   966篇
  2024年   3篇
  2023年   33篇
  2022年   149篇
  2021年   81篇
  2020年   25篇
  2019年   22篇
  2018年   34篇
  2017年   21篇
  2016年   23篇
  2015年   26篇
  2014年   37篇
  2013年   22篇
  2012年   504篇
  2011年   713篇
  2010年   119篇
  2009年   44篇
  2008年   393篇
  2007年   387篇
  2006年   401篇
  2005年   323篇
  2004年   257篇
  2003年   180篇
  2002年   135篇
  2001年   104篇
  2000年   93篇
  1999年   33篇
  1998年   10篇
  1997年   9篇
  1996年   38篇
  1995年   29篇
  1994年   41篇
  1993年   41篇
  1992年   34篇
  1991年   7篇
  1990年   24篇
  1989年   10篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
排序方式: 共有4424条查询结果,搜索用时 15 毫秒
1.
With the development of device engineering and molecular design,organic field effect transistors(OFETs)with high mobility over 10 cm2 V-1-s-1 have been reported.However,the nonideal doubleslope effect has been frequently observed in some of these OFETs,which makes it difficult to extract the intrinsic mobility OFETs accurately,impeding the further application of them.In this review,the origin of the nonideal double-slope effect has been discussed thoroughly,with affecting factors such as contact resistance,charge trapping,disorder effects and coulombic interactions considered.According to these discussions and the understanding of the mechanism behind double-slope effect,several strategies have been proposed to realize ideal OFETs,such as doping,molecular engineering,charge trapping reduction,and contact engineering.After that,some novel devices based on the nonideal double-slope behaviors have been also introduced.  相似文献   
2.
In this study,the strain rate-dependent dynamic tensile behavior of ZrB2-20%SiC ceramic composite was investigated using experimental and numerical approaches.The split Hopkinson pressure bar apparatus was used to measure the dynamic splitting tensile response at strain rates of 17-67 s?1.The experiment results demonstrate a significant strain rate dependence of the dynamic tensile behavior of the ZrB2-SiC ceramic composite.The dynamic tensile strength increased linearly with the strain rate,from 288 MPa at 17 s?1to 654 MPa at 67 s?1.Moreover,a strain rate-dependent tensile strength was introduced into a modified JH-2 model to describe the dynamic tensile behavior and fracture process of ZrB2-SiC ceramics.The numerical results of dynamic tensile strength agree well with the experimental result.Moreover,the fracture process of ZrB2-SiC ceramics under dynamic tension was further studied by combining high-speed images and numerical results.The effect of strain rate on the fracture process and failure patterns of the ZrB2-SiC ceramic composite could be verified by the modified JH-2 model.  相似文献   
3.
Hui Chen 《中国物理 B》2022,31(9):97405-097405
Recently, the discovery of vanadium-based kagome metal AV3Sb5 (A= K, Rb, Cs) has attracted great interest in the field of superconductivity due to the coexistence of superconductivity, non-trivial surface state and multiple density waves. In this topical review, we present recent works of superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5. We start with the unconventional charge density waves, which are thought to correlate to the time-reversal symmetry-breaking orders and the unconventional anomalous Hall effects in AV3Sb5. Then we discuss the superconductivity and the topological band structure. Next, we review the competition between the superconductivity and charge density waves under different conditions of pressure, chemical doping, thickness, and strains. Finally, the experimental evidence of pseudogap pair density wave is discussed.  相似文献   
4.
Despite the continuously increased requirement on automated synthesis of medicines for distributed manufacturing and personal care, it remains a challenge to realize automated synthesis which requires solid-liquid phase reactions. In this work, we demonstrated an automated solid-liquid synthesis for gadopentetate dimeglumine, the most widely used magnetic resonance imaging(MRI) contrast agent. The high-efficiency reaction was performed in a 3 D microfluidic chip which was fabricated by femtoseco...  相似文献   
5.
The introduction of spinel phase to form the layered-spinel structure(LSS)is an effective way to improve the electrochemical performance of Li-and Mn-rich layered oxides(LMR).But is this structure universal for all LMR systems?In this work,different Mn/Ni ratio systems with the LSS are discussed in detail.It is found that,high discharge capacity(200.8 mA h g-1 at 1C rate;1C=250 mA h g-1)as well as high capacity-retention(94%at 1C rate after 100 cycles)can be achieved by forming the LSS for low-Ni system(Mn/Ni=5.0).However,the capacity retention decreases severely in the high-Ni system(Mn/Ni=3.5,2.6).For example,when the ratio of Mn/Ni is 3.5,the capacity-retention of the layered-spinel sample was only 65.8%,compared to the 83%of the original LMR sample.The Ex-situ XRD,XPS,and HRTEM results demonstrate that the introduction of spinel phase in high-Ni system accelerates the transition and collapse of the crystal structure.This work provides guidance for optimizing the proportions of elements and the design of structures for the LMR.  相似文献   
6.
Yuejun Ding 《中国物理 B》2022,31(6):68201-068201
Na-ion batteries (NIBs) are regarding as the optimum complement for Li-ion batteries along with the rapid development of stationary energy storage systems. In order to meet the commercial demands of cathodes for NIBs, O3-type Cu containing layered oxide Na0.90Cu0.22Fe0.30Mn0.48O2 with good comprehensive performance and low-cost element components is very promising for the practical use. However, only part of the Cu3+/Cu2+ redox couple participated in the redox reaction, thus impairing the specific capacity of the cathode materials. Herein, Mg2+-doped O3-Na0.90Mg0.08Cu0.22Fe0.30Mn0.40O2 layered oxide without Mn3+ was synthesized successfully, which exhibited improved reversible specific capacity of 118 mAh/g in the voltage range of 2.4-4.0 V at 0.2 C, corresponding to the intercalation/deintercalation of 0.47 Na+ (0.1 more than that of Na0.90Cu0.22Fe0.30Mn0.48O2). This work demonstrates an important strategy to obtain advanced layered oxide cathodes for NIBs.  相似文献   
7.
Yukai Zhuang 《中国物理 B》2022,31(8):89101-089101
Iron oxides are widely found as ores in Earth's crust and are also important constituents of its interiors. Their polymorphism, composition changes, and electronic structures play essential roles in controlling the structure and geodynamic properties of the solid Earth. While all-natural occurring iron oxides are semiconductors or insulators at ambient pressure, they start to metalize under pressure. Here in this work, we review the electronic conductivity and metallization of iron oxides under high-pressure conditions found in Earth's lower mantle. We summarize that the metallization of iron oxides is generally controlled by the pressure-induced bandgap closure near the Fermi level. After metallization, they possess much higher electrical and thermal conductivity, which will facilitate the thermal convection, support a more stable and thicker D$\prime\prime$ layer, and formulate Earth's magnetic field, all of which will constrain the large-scale dynamos of the mantle and core.  相似文献   
8.
Light-driven conversion of CO2into chemicals/fuels is a desirable approach for achieving carbon neutrality using clean and sustainable energy.However,its scale-up application is restricted due to insufficient efficiency.Herein,we present a photothermal catalytic hydrogenation of CO2into CH4over Ru/black Ti O2catalysts,aiming to achieve the synergistic use of light and heat in solar energy during CO2conversion.Owing to the desirable spectral ...  相似文献   
9.
Artificial membrane transporters that either use chalcogen bonds to facilitate transmembrane flux of anions or show high selectivity toward perchlorate anions are rare.In this work,we report on one such novel monopeptide-based transporter system,featuring both chalcogen bonds for highly efficient anion transport and high transport selectivity toward ClO4-anions.Structurally,these monopeptide molecules associate with each other via H-bonds to produce H-bonded 1 D stack that ...  相似文献   
10.
Qi Qin 《中国物理 B》2022,31(7):78502-078502
In the post-Moore era, neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks. Memristors have been proposed as a key part of neuromorphic computing architectures, and can be used to emulate the synaptic plasticities of the human brain. Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage, low write/read latency and tunable conductive states. However, among the reported ferroelectric memristors, the mechanisms of resistive switching are still under debate. In addition, there needs to be more research on emulation of the brain synapses using ferroelectric memristors. Herein, Cu/PbZr0.52Ti0.48O3 (PZT)/Pt ferroelectric memristors have been fabricated. The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior. The synaptic plasticities, including excitatory post-synaptic current, paired-pulse facilitation, paired-pulse depression and spike time-dependent plasticity, have been mimicked by the PZT devices. Furthermore, the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models. This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号