首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   36篇
  国内免费   75篇
化学   116篇
力学   5篇
综合类   14篇
数学   52篇
物理学   106篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   23篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   10篇
  2006年   13篇
  2005年   20篇
  2004年   22篇
  2003年   17篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1979年   1篇
  1975年   1篇
  1964年   1篇
  1958年   1篇
  1957年   3篇
  1956年   2篇
  1954年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
1.
噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)是目前世界上最灵敏的激光吸收光谱技术,其在低压环境中具有极高的探测灵敏度。然而当测量样品处于大气压时,NICE-OHMS系统的探测灵敏度会大幅下降。主要原因之一是大气压下获取最大NICE-OHMS信号幅度的条件与低气压下不同。通过对大气压NICE-OHMS理论进行分析,分析了影响信号幅度的参数,并通过数值模拟来寻找最佳的实验条件。本文着重讨论影响信号的主要参数包括光学腔腔长L,调制系数β,探测相位θ。其中,由于在NICE-OHMS中使用DeVoe-Brewer技术将调制频率ν_m锁定到Fabry-Parot(FP)腔的自由光谱区(FSR)。因此FP腔的腔长决定了ν_m,同时还作用于信号幅度S■。模拟结果显示,当腔长增大时,由于ν_m随之减小,载波和边带的光谱成分相互重叠部分增大,因此线型函数的幅度逐渐减小。而吸收信号幅度随着腔长的增加而逐渐增加,色散信号幅度先增大后减小,并且在腔长等于8 cm时达到最大值。调制系数β会影响频率调制后激光载波和边带的幅度大小,并且影响信号线型。随着腔长的增加,最大信号幅度对应的β值也随之增加。在相同腔长下,色散信号的最佳β值小于吸收信号,更容易使用电光调制器实现。最后分析了参数的可实现性,分析了不同种类激光器的频率调谐能力,压电陶瓷的扫描宽度等。以乙炔气体为例,大气压下NICE-OHMS的谱线半宽达到~3 GHz,而光谱覆盖范围大于10 GHz。分布反馈式半导体激光器(DFB)与外腔二极管激光器(ECDL)的频率调谐范围可以达到30 GHz以上,但是由于激光线宽宽,得到的PDH锁定性能欠佳。回音壁模式激光器(WGM)和掺饵光纤激光器(EDFL)线宽为百Hz量级,是目前高灵敏NICE-OHMS系统中常用的光源。但是WGM目前可以实现了5 GHz的激光频率调谐范围,而EDFL的外部电压可控制的调谐范围仅为3 GHz。使用精细度为55000的腔进行模拟,调制系数β=1,腔长大于8 cm时,可使用WGM激光器实现,腔长大于25 cm时,可以使用EDFL激光器实现。而对于在设计光学腔中常用的伸缩长度为25μm的PZT,随着腔长的增加,对应的腔模频移范围逐渐减小,在腔长为典型的40 cm时,扫描范围大于12 GHz。  相似文献   
2.
为助力科技型创新企业准确且快速地从外部捕获创新技术机会, 提出一种企业技术机会发现和辅助决策方法. 首先, 挖掘领域内的技术热点、技术重点和有潜力的技术作为领域技术创新机会. 然后, 通过关联规则分析领域技术机会和企业已有技术之间的相关性, 进一步结合技术掌握度和新颖度, 识别更适合企业的技术创新机会. 最后, 创新性地采用Sen-BERT语言模型和K-means聚类方法构建技术功效矩阵, 辅助企业从功能需求的角度进行技术创新决策. 以电动汽车领域为例验证了该方法的可行性.  相似文献   
3.
锌具有原料丰富、质量轻便、金属导电性与延展性好以及理论比容量高等优势,可以作为绿色可充电电池的理想电极材料。其中,以中性或弱酸性水溶液为电解质、锌为负极的锌基水系电池具有安全性高、电池材料廉价无毒、制备工艺简单、环境友好等特点,在储能和动力电池领域具有极高的应用价值和发展前景。但电池充放电过程中伴随的锌枝晶、析氢、腐蚀、钝化等问题限制了其实际应用。本文综述了锌基水系电池负极存在的问题及当前的解决策略,并对其负极研究发展方向进行了展望。  相似文献   
4.
硅氧化物(SiOx, 0<x≤2)具有高的比容量和低的嵌锂电位, 且体积膨胀率显著低于纯硅负极, 因而被认为是替代传统石墨负极材料的理想选择之一. 然而SiOx负极在首次嵌锂过程中表面形成的固体电解质界面膜(SEI)以及大量的不可逆产物, 造成其首次库伦效率偏低, 严重阻碍了SiOx负极的实际应用. 本文从SiOx的结构模型出发, 系统阐述了SiOx负极的嵌锂机理以及首次库伦效率低的原因; 归纳了SiOx负极首次库伦效率的提升策略及其研究进展; 并对提升SiOx负极首次库伦效率的未来发展方向进行了展望.  相似文献   
5.
该文研究了一类带有非奇异系数矩阵的2×2强耦合偏微分方程组的卡勒曼估计.文献[7]和[15]利用对角化的技巧将方程组解耦,证明了一个2×2强耦合双曲方程组的卡勒曼估计.不同于此,该文考虑将微分方程组的两个方程作为整体来建立逐点的卡勒曼,然后进一步得到了这类强耦合方程组的全局卡勒曼估计.最后,作为卡勒曼估计的应用,该文建立了一个反源问题的Hlder稳定性.  相似文献   
6.
利用甲烷(CH4)气体分子在1.6 μm的吸收特性,使用中心波数为6 046.96 cm-1的蝶形分布反馈式(DFB)激光器和自制的大内径光声池,设计了一款紧凑高灵敏的CH4气体传感器。为了进一步增强输出光声信号强度,一个具有高反射率的平面镜放置在光声池后,使透射光束被反射后,二次通过光声池,增强了光与被测气体的作用距离,使光声信号提高了1.9倍。传感器各项参数,包括调制频率、调制深度及气体流速被优化。在标准大气压和1 s的积分时间下,该传感器最终获得的探测灵敏度为0.21 ppm,1σ归一化等效噪声系数(NNEA)为2.1×10-8 cm-1·W·Hz-1/2。该甲烷传感器使用性价比高的DFB近红外激光二极管作为激发光源,装置简单,成本低廉可以满足大气环境检测、矿井瓦斯监测、工业过程控制及无创伤医疗诊断等领域的需求。  相似文献   
7.
在解一元二次方程有关问题时,常常忽略一些细小的问题,从而导致解题错误,本文举例说明,以引起同学们注意.1.注意二次项系数不为零.例1关于x的一元二次方  相似文献   
8.
噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)由于结合了频率调制光谱与腔增强光谱两种技术,不仅可以将激光耦合到高精细度谐振腔大幅提高腔内功率,还可以实现低气压样品气体的高灵敏测量,因此基于该技术可以实现分子吸收线的饱和,获得亚多普勒光谱,从而能作为激光频率锁定的参考.本文基于光纤激光器的NICE-OHMS技术,将光纤激光器频率锁定到NH3的亚多普勒吸收线上.首先分析了基于Pound-Drever-Hall和DeVoe-Brewer技术实现激光到腔模和调制频率到腔自由光谱区频率锁定的性能,之后在腔内气压为70 mTorr条件下,测量了半高全宽为2.05 MHz的NH3亚多普勒信号,最后将1.53μm的光纤激光器频率锁定到该亚多普勒吸收线上,相对频率偏差为16.3 kHz,阿伦方差结果显示,136 s积分时间下频率稳定度达到1.6×10~(-12).  相似文献   
9.
小分子铱配合物及其电致发光   总被引:1,自引:0,他引:1  
由于磷光金属配合物可以同时利用单线态和三线态激子发光,使有机电致发光器件的理论内量子效率达到100%,突破了25%的极限。因而以磷光金属配合物为发光材料制成的器件备受关注。在这些金属配合物中,铱配合物由于具有较强的发光特性、发光波长可调性、较好的热稳定性和电化学稳定性以及能够形成便于蒸镀的中性分子,而成为最有应用潜力的...  相似文献   
10.
本文以低比例的磷光材料作为给体,制备了基于MoOx/C60:x%Ir(ppy)3的有机太阳能电池(OPV)器件.其中,C60为高比例的受体材料,金属配合物Ir(ppy)3为低比例的给体材料,MoOx为阳极缓冲层.通过一系列不同Ir(ppy)3比例的OPV器件对比研究,得出了最优器件结构.研究发现,当Ir(ppy)3比例足够小时,器件表现为肖特基势垒,开路电压(VOC)较大,短路电流(JSC)较小;随着Ir(ppy)3比例的增加,VOC逐渐减少,而JSC逐渐增大;当进一步增加Ir(ppy)3比例时,VOC趋于稳定,JSC开始减小.结果显示,5%Ir(ppy)3比例的器件性能最佳,效率达1.7%.为了使器件效率得到进一步提升,本研究组采用吸收光谱范围比C60更宽的C70作为受体材料,使光电转换效率进一步提升至3.0%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号