首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
数学   1篇
物理学   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Low‐operating voltage, high mobility, and stable organic field‐effect transistors (OFETs) using polymeric dielectrics such as pristine poly(4‐vinyl phenol) (PVP) and poly(methyl methacrylate) (PMMA), dissolved in solvents of high dipole moment, have been achieved. High dipole moment solvents such as propylene carbonate and dimethyl sulfoxide used for dissolving the polymer dielectric enhance the charge carrier mobilities by three orders of magnitude in pentacene OFETs compared with low dipole moment solvents. Fast switching circuits with patterned gate PVP‐based pentacene OFETs demonstrated a switching frequency of 75 kHz at input voltages of |5 V|. The frequency response of the OFETs is attributed to a high degree of dipolar‐order in dielectric films obtained from high‐polarity solvents and the resulting energetically ordered landscape for transport. Remarkably, these pentacene‐based OFETs exhibited high stability under bias stress and in air with negligible shifts in the threshold voltage. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1533–1542  相似文献   
2.
Matrix-assisted pulsed-laser evaporation (MAPLE) provides a mechanism for layer-by-layer growth to control the polymer–dielectric interface in organic metal–insulator–semiconductor (MIS) diodes and field-effect transistors (FETs). MAPLE-deposited copolymers of polyfluorene (PF) and polythiophene maintain their structural and optical properties, as determined by Raman spectroscopy, absorption, and photoluminescence. These films are further utilized in MIS and FET structures with SiO2 and other polymer dielectrics. Since common polymer dielectrics prevent spin coating of solution processable polymers due to solubility effects, MAPLE is one of the only deposition techniques for investigating all polymer semiconductor-insulator interfaces. In this paper we present optical and electrical studies of MAPLE-deposited PF and polythiophene films in FETs and MIS structures. The FET carrier mobilities of these devices compare well with spin-coated devices. Capacitance–voltage and conductance–voltage from MIS structures with MAPLE-deposited PF copolymer films yield interface trap densities in the low 1012 eV−1 cm−2 range.  相似文献   
3.
Compliance and enforcement in fisheries are important issues from an economic point of view since management measures are useless without a certain level of enforcement. These conclusions come from the well‐established theoretical literature on compliance and enforcement problems within fisheries and a common result is that, it is efficient to set fines as high as possible and monitoring as low as possible, when fines are costless and offenders are risk neutral. However, this result is sensitive to the assumption that fishermen cannot engage in avoidance activities, e.g., activities to reduce the likelihood of being detected when noncomplying. The paper presents a model of fisheries that allows the fishermen to engage in avoidance activities. The conclusions from the model are that, under certain circumstances, fines are costly transfers to society since they not only have a direct positive effect on the level of deterrence, but also an indirect negative effect in the form of increased avoidance activities to reduce the probability of detection. The paper contributes to the literature on avoidance activities by introducing the externality from the illegal behavior as an endogenous effect on other offenders. For an externality, that has an exogenous effect on other actors, Malik shows that fines are only costly transfers for conditional deterrence (when one actor is deterred while another actor is not). For fisheries, we show that fines are also costly transfers under no deterrence (when no agents are deterred).  相似文献   
4.
We present a systematic investigation of the effects of oxygen growth pressure on the structural, optical, and electrical properties of In2O3:Cr thin films grown by pulsed laser deposition. X-ray diffraction analysis showed increases in lattice constant from 10.103 Å to 10.337 Å, and in particle size from 13.9 nm to 35.5 nm as the oxygen growth pressure increased from 7.5 × 10−6 Torr to 7.5 × 10−3 Torr, respectively. The observed shift in the X-ray diffraction peaks to lower angles was assumed to be caused by the reduction in the lattice defect density, precisely oxygen vacancies. The optical transparency increased with partial oxygen pressure (PO2), and an average transmittance of 85% was obtained at 7.5 × 10−3 Torr. The films are highly conducting with resistivity as low as 2 × 10−4 Ω cm and mobility as high as 133 cm/V s. Temperature dependent resistivity measurements in the 45 < T < 300 K temperature range reveal that films grown at 7.5×10−6PO2≤7.5×10−4 Torr exhibit negative temperature coefficient of resistivity (TCR) below approximately T = 60 K, T = 120 K, T = 160 K; then positive TCR in the temperature intervals 60 < T < 300 K, 120 < T < 300 K, and 160 < T < 300 K, respectively. This suggests that two disparate mechanisms govern electrical dc transport in the two temperature regions. Film grown at PO2 of 7.5 × 10−3 Torr displayed typical semiconducting behavior with negative TCR in the whole temperature region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号