首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
物理学   25篇
  2010年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
We have used electron spin resonance measurements to derive the temperature and frequency dependences of the field-induced magnetization [M(T, f)] and anisotropy field [Han (T)] in a number of amorphous alloys belonging to the series (FepNi1−p)75P16B6Al3. In re-entrant (p > pc, the critical concentration for ferromagnetism) alloys at hi gh frequencies (f = 35 GHz, field ≈ 12 kOe) M reduces as T3/2 at high T and as T below ≈ 40 K, the deviation from T3/2 becoming more marked as pp+c. For p close to pc, lowering the frequency first causes the T term to increase and ultimately ( ≈ 4 GHz) changes the variation of M with T to that discovered previously for concentrated spin glasses, namely M is constant at low T and drops linearly at high temperatures. For the re-entrants, the results are interpreted on the basis of a model which invokes an energy gap in the spin-wave spectrum, introduces a non-zero density of states of the gap energy and takes into consideration a low-q cut-off in the spin-wave integral in thelow-T (T) regime.In the concentrated spin glasses [M (0) - M (T)]/ M (0) is well represented by the function [exp (Δ / T) - 1]-1, where Δ has values close to the corresponding Curie-Weiss temperatures θp but much larger than the respective spin glass transition temperatures TSG. The temperature dependence of Han is largely given by the function (1 - T/T*), where T* is equal to the zero-field freezing temperature for the re-entrants and TSG for the spin glasses, respectively.  相似文献   
2.
It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed  相似文献   
3.
A Ka-band gyrotron oscillator powered by a compact pulseline accelerator has been operated using oscillator cavities with and without axial slots. The oscillator was operated at high voltage (~900 keV) and high current (~500 A) in the approximate frequency range of 20-50 GHz. The use of axial slots has been shown to suppress low-starting-current whispering-gallery modes, in particular, modes of the TEm2 type, allowing stable operation in a linearly polarized TE13 mode. A peak power of 35 MW has been observed at 6% efficiency  相似文献   
4.
As plasma processing reactors approach higher density, the sheath models which neglect the radio frequency (RF) response of the ions become invalid. This work show that the nature of the collisionless RE ion sheath can be described in a number of different regimes of parameter space. These regimes can all be visualized on a single two-dimensional (2-D) plot where the horizontal axis is the ion plasma frequency divided by the frequency, and the vertical axis is the electron oscillating velocity divided by the ion sound speed  相似文献   
5.
Cyclotron wave amplifiers at the harmonics of the electron cyclotron frequency are investigated. Since the waves on the beam are electrostatic, harmonics are strongly excited in nonrelativistic beams if they are rotating rather than filamentary. These modes at the harmonics can couple to input Cuccia couplers, and pump fields which drive parametric amplification, in very much the same way as they do on filamentary beams at the cyclotron frequency. Harmonic cyclotron wave amplifiers have the possibility of giving rise to a new class of devices at millimeter wave frequencies  相似文献   
6.
Gyrotrons are currently the highest power millimeter wave source. The power level currently available is more than sufficient for almost any radar application. However the fact that gyrotrons exist as free running oscillators is thought to restrict their application to Doppler radars. This paper shows that with enhanced data processing at the receiver, many Doppler radar functions become possible.  相似文献   
7.
We report measurements on magnetic resonance in a number of transition metal-glass former complexes. Data were taken over a wide range of frequencies (2–35 GHz) and temperatures (2–300 K). In the ferromagnetic regime all the systems have a term in their linewidth which points strongly to noncolinearity of spin in glassy magnets even in a nominally saturated state. At low temperatures, in the reentrant alloys, there is a characteristic exponential term describing the increase in linewidth, with reducing T. Such a contribution appears in most random spin systems. There is no adequate microscopic picture to account for many of the results.  相似文献   
8.
A linear analysis of the electron-beam deflection system in a magnicon amplifier is presented. The system consists of identical cavities, one driven and the remainder passive, separated by a drift space and immersed in an axial magnetic field. The cavities contain a rotating TM110 mode. The length of each cavity is πν z/ω, and that of the drift space is πνzc, where ω is the RF frequency, ωc is the relativistic gyrofrequency in the guide field, and νz is the mean axial velocity of the beam electrons. The linearized electron orbits are obtained for arbitrary initial axial velocity, radial coordinate, and magnetic field. The small-signal gain and the phase shift are determined. The special case where ωc/ω=2 has unique features and is discussed in detail. For the NRL magnicon design, a power gain of 10 dB per passive cavity is feasible. Results from numerical modeling of a magnicon with two passive cavities are presented. Operation of the output cavity at the fundamental and higher harmonics of the input drive frequency is briefly discussed  相似文献   
9.
An experimental study of the gain between two half-wavelength, 5.7-GHz TM110 mode pillbox cavities, separated by a quarter-wavelength drift space, and powered by a 170-A, 500-keV electron beam immersed in an 8.1-kG magnetic field is reported. These cavities constitute the first section of a planned multicavity deflection system, whose purpose is to spin up an electron beam to high transverse momentum (α≡υ⊥/υz⩾1) for injection into the output cavity of a frequency-doubling magnicon amplifier. A gain of ~15 dB was observed in the preferred circular polarization, at a frequency shift of approximately -0.18%, in the opposite circular polarization, at a frequency shift of approximately +0.06%. These results are in good agreement with theory  相似文献   
10.
Equilibria and stability (both single-mode and sideband) are calculated and contrasted for free-running, phase-locked, and mode-locked oscillator configurations in a quasi-optical gyrotron. The oscillator can be phase locked by direct injection of radiation into the oscillator cavity. The equilibrium and stability properties are not greatly affected at low injection power levels. Alternatively, the oscillator could be phase locked by prebunching the beam. If the beam is prebunched, there are dramatic effects on both equilibrium and stability. The transverse efficiency can be considerably enhanced by prebunching the beam. This prebunching can be done on either a phase-locked (using an external RF source) or mode-locked (using the oscillator output) configuration. The stable locking bandwidth turns out to be about half the ω/Q linewidth of the mode  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号