首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   7篇
化学   134篇
数学   1篇
物理学   7篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   12篇
  2011年   12篇
  2010年   2篇
  2009年   1篇
  2008年   14篇
  2007年   18篇
  2006年   13篇
  2005年   14篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1971年   1篇
排序方式: 共有142条查询结果,搜索用时 125 毫秒
1.
Histone deacetylase (HDAC) inhibitors have recently attracted considerable interest because of their therapeutic potential for the treatment of cell proliferative diseases. An X-ray structure of a very potent inhibitor, Trichostatin A (TSA), bound to HDLP (an HDAC analogue isolated from Aquifex aeolicus), is available. From this structure, an active site model (322 atoms), relevant for the binding of TSA and structural analogues, has been derived, and TSA has been minimized in this active site at HF 3-21G* level. The resulting conformation is in excellent accordance with the X-ray structure, and indicates a deprotonation of the hydroxamic acid in TSA by His 131. Also, a water molecule was minimized in the active site. In addition to a similar deprotonation, in accordance with a possible catalytic mechanism of HDAC as proposed by Finnin et al. (M. S. Finnin, J. R. Donigian, A. Cohen, V. M. Richon, R. A. Rifkind and P. A. Marks, Nature, 1999, 401, 188-193), a displacement of the resulting OH- ion in the active site was observed. Based on these results, the difference in energy of binding between TSA and water was calculated. The resulting value is realistic in respect to experimental binding affinities. Furthermore, the mechanism of action of the His 131-Asp 166 charge relay system was investigated. Although the Asp residue in this motif is known to substantially increase the basicity of the His residue, no proton transfer from His 131 to Asp 166 was observed on binding of TSA or water. However, in the empty protonated active site, this proton transfer does occur.  相似文献   
2.
A detailed investigation of the electrophilic and nucleophilic character of singlet silylenes and germylenes, divalent compounds of silicon and germanium, respectively, substituted by first- and second-row elements is presented. In a first part, the Lewis acid properties of these compounds were studied through their complexation reaction with the Lewis bases NH3, PH3, and AsH3. The results indicate that this complexation is most favorable with the hardest base NH3, classifying these compounds as hard Lewis acids. This is confirmed by the linear correlation between the interaction energies and the value of the electrostatic potential, used as an approximation to the local hardness, near the empty p orbital of these compounds, indicating a charge-controlled interaction in the complex. Also the electrophilicity index, proposed by Parr et al., computed both at the global and the local level, correlates linearly with the complexation energies of the compounds with NH3. The Lewis base character of these silylenes has been investigated, through their interaction with the acids BH3 and AlH3. Also in this case, the electrostatic potential can be used to probe the reactivity of the compounds. It will finally be demonstrated that an increasing stability of the silylenes and germylenes is accompanied by an increase in their nucleophilicity and a decrease of the electrophilicity.  相似文献   
3.
The structure of tricyclo-(3.1.002,4)exane has been determined by gas phase electron diffraction. The molecule has an inversion centre. The mean carbon—carbon bond length, averaged over both three- and four-membered rings is 1.508 A. A model with equal C-C bond lengths fits to the measured diffraction intensities. The four-membered ring is planar with valency angles of 90°, while the carbon atoms of the three-membered rings form isosceles triangles. Ab initio quantum mechanical calculations at the STO-3G level support this geometry. The valency angle CCC (between three- and four-membered rings) for the equilateral four-membered ring model has been found experimentally to be 109.9°. The average C-H bond distance (1.080 Å) is small as a result of increased s-character in these bonds in agreement with reported INDO—LMO calculations.  相似文献   
4.
A derivation of the density-functional-theory- (DFT) based reactivity indices in the ensemble unrestricted Hartree-Fock (eUHF) method is presented. The comparison between the properties of the reactivity indices evaluated in one and two sets of spin-orbital approach of the eUHF and hyper-unrestricted Hartree-Fock (UHF) methods are shown. All approaches give similar Fukui function irrespective of methodology used, but significantly differ for the global indices, containing important chemical information, and so their interpretation in terms of DFT- based indices can be questionable. The calculation scheme for the indices using the first- and second-order coupled perturbed eHF equations is proposed. A method for the identification of the spinorbitals involved in the change of the total number of electrons is included. The illustrative examples (water and hydrogen cyanide) show that the ground-state (GS) properties of the (Z +/- 1)-electron systems can be predicted from the GS properties of the Z-electron systems with an accuracy comparable with the UHF calculations. The relaxation effect, important for the HCN system in which a change in the symmetry of the highest-occupied spin-orbital occurs, is effectively predicted.  相似文献   
5.
A theoretical study is performed of the Diels-Alder reactions of various o-quinodimethanes (QDM) with C(60) by the AM1 model and limited ab initio and DFT techniques. All reactions are shown to proceed through a concerted transition state possessing a considerable net aromaticity as evidenced from bond orders and magnetic criteria such as the magnetic susceptibility exhaltations (MSE) and nucleus independent chemical shifts (NICS) and produce different kinds of aromatic stabilized fullerene cycloadducts. Computations show that a strong LUMO-dienophile control of C(60) is realized by the influence of pyramidalization, but its high reactivity over alkene appears to be governed by the global aromaticity on fullerene rather than its strain. The aromatic functionalization occurring in QDM upon cycloaddition drastically increases the reaction rate and exothermicity of all QDM-C(60) reactions as compared to the butadiene-C(60) reaction. In fact, the simultaneously existing aromatic destabilization in fullerene indicates its opposite effect to the resonance stabilization in diene; it is thus fully restricted when the gained aromaticity is transmitted from the nucleophilic QDM to the fullerene electrophile in a push-pull manner. However, the overall aromaticity effect shown by the aromatization as well as the aromaticity of C(60) seems to accelerate these reactions at an increased rate.  相似文献   
6.
Current-density maps were calculated by the ipsocentric CTOCD-DZ/6-311G** (CTOCD-DZ=continuous transformation of origin of current density-diamagnetic zero) approach for three sets of inorganic monocycles: S(4) (2+), Se(4) (2+), S(2)N(2), P(5) (-) and As(5) (-) with 6 pi electrons; S(3)N(3) (-), S(4)N(3) (+) and S(4)N(4) (2+) with 10 pi electrons; and S(5)N(5) (+) with 14 pi electrons. Ipsocentric orbital analysis was used to partition the currents into contributions from small groups of active electrons and to interpret the contributions in terms of symmetry- and energy-based selection rules. All nine systems were found to support diatropic pi currents, reinforced by sigma circulations in P(5) (-), As(5) (-), S(3)N(3) (-), S(4)N(3) (+), S(4)N(4) (2+) and S(5)N(5) (+), but opposed by them in S(4) (2+), Se(4) (2+) and S(2)N(2). The opposition of pi and sigma effects in the four-membered rings is compatible with height profiles of calculated NICS (nucleus-independent chemical shifts).  相似文献   
7.
A Hirshfeld decomposition scheme of the Hartree-Fock total molecular energy into atomic energies is presented. The calculations are performed by direct numerical integration and the results are compared for a set of 28 molecules containing different kinds of atoms. The calculated atomic energies show a strong dependency on changes of atomic electron population and hybridization. Linear correlations are found between the energy and the population for H, these being related to the electronegativity of this atom and to the external potential created by the remaining atoms. The proposed energy partitioning scheme appears to be useful for studies such as proton acidity, the anomeric effect and group transferability, and allows atomic virial ratios to be obtained. Finally, the atomic potential energies are found to mimic trends based on exact expressions as well as trends displayed by molecular quantities, thus lending credibility to the partitioning scheme used.  相似文献   
8.
9.
A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN ) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel–Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two-sided topology and others favor Möbius single-sided topologies. The meso-substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.  相似文献   
10.
The Diels-Alder reactions of various quinodimethanes with ethylene are studied by means of ab initio molecular orbital and density functional theory (DFT) to show the effect of aromaticity on the reaction path. The calculations reveal that these reactions are both kinetically and thermodynamically much more favored than the prototype butadiene-ethylene Diels-Alder reaction due to the aromatization process in the transition state (TS) and product. A progressive aromaticity gain is noticed during the reaction, and hence the partial pi-delocalized peripheral diene ring function is coupled with the six-electron sigma,pi-delocalized cyclic unit resulting in an enhanced aromaticity of the TS. The magnetic criteria such as magnetic susceptibility exaltation and nucleus independent chemical shift provide definitive evidence for and fully support the aromatization process and the aromaticity of the TS. The extent of sigma-pi delocalization and the bond make-break at the TS are consistent with each other, and this is strongly influenced by the adjacent pi-aromatization process. Moreover, the aromaticity trends in the resulting TSs and products parallel the activation and reaction energies; the extent of aromatization increases with increasing reaction rate and exothermicity. This confirms that aromaticity is the driving factor governing cycloadditions involving quinodimethanes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号