首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   12篇
数学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2007年   3篇
  2005年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
We develop an antimicrobial active robust metal-cellulose nanohybrid by covalent assembly of metal nanoparticles on cellulose fabric using a simple impregnation of thiol-modified cellulose fabric in colloidal silver (Ag) or palladium (Pd) nanoparticle solutions. The combined results of high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDXS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) reveal that the nanoparticles are highly loaded and dispersed in the thiol-modified cellulose fabric, and X-ray photoelectron spectroscopy (XPS) analysis reveals that the nanoparticles are immobilized in the fabric by a strong and stable covalent bond with thiol functional group. This robust covalent linkage between the nanoparticles and the fabric leads to a remarkable suppression of the release of metal nanoparticles from the fabric. In addition, the metal-cellulose nanohybrids show high antimicrobial activity in excess of 99.9 % growth inhibition of the microorganism. Thus, we anticipate that our metal-cellulose nanohybrid may not only protect cell damage caused by penetration and fixation of metal nanoparticles into the human body but also act as a sustainable biomedical textile.  相似文献   
3.
Cellulose - Several billion tons of plastic waste were discarded in landfills, specifically in marine environments. Remediation of plastic waste is vital for ensuring a clean marine environment....  相似文献   
4.
Dynamic mechanical and solid-state 13C nuclear magnetic resonance (NMR) analyses have been used to assess a molecular-scale heterogeneity in a raw elastomer (butadiene-acrylonitrile copolymer elastomer, NBR), a microcrystalline polymer (poly(vinyl chloride), PVC), and their 50/50 blend. The presence of the microcrystalline heterogeneity in PVC and in the blend was characterized by the temperature dependence of the frequency-swept dynamic mechanical behavior. The NMR T relaxation experiments with cross-polarization (CP) and magic-angle spinning (MAS) revealed that (1) NBR contained a substantial fraction (ca. 27%) of a molecular-scale heterogeneity identified as butadiene blocks, (2) the fraction of microcrystallites in PVC was ca. 14%, (3) pure phases of both component polymers were present in the blend, dispersed in the mixed matrix, (4) the upper limit of the heterogeneous domains was estimated to be ca. 2.4 nm, and (5) fractions of heterogeneity tend to increase upon blending, indicating that the solubility of the butadiene block and syndiotactic PVC block decreases in the blend. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 709–716, 1997  相似文献   
5.

Uniformly-sized porous cellulose beads functionalized with amidoxime groups were prepared for the first time using a microfluidic method with N-methylmorpholine N-oxide (NMMO) monohydrate as a cellulose solvent. The molten state cellulose dope in NMMO monohydrate (cell/NMMO dope) as a disperse phase and hot mineral oil as a continuous phase were used in a T-junction microfluidic chip to produce uniformly-sized cell/NMMO droplets. Coagulation of the molten state cell/NMMO droplet at high temperature and amidoxime functionalization could prepare the highly-porous spherical amidoxime-functionalized cellulose beads with a uniform fibrous open internal structure. The prepared amidoxime-functionalized cellulose beads showed excellent metal adsorption properties with a maximum adsorption capacity of?~?80 mg g?1 in the case of Cu2+/phthalate ions. The newly developed highly-porous cellulose beads can open many new applications with other proper functionalization at the reactive hydroxyl groups of the cellulose.

Graphic abstract
  相似文献   
6.
We demonstrated the fabrication of electrically anisotropic thin films of alternating polymeric layers and metallic layers in nanometer thickness by utilizing self-assembled nanodomains of symmetric diblock copolymers. Nanometer-thick metal layers macroscopically parallel to the film plane were synthesized by electroless Ag deposition on Au nanoparticles selectively in one of the blocks. Every Ag/Au layer was completely separated by nanometer-thick polymer layers in the direction perpendicular to the film plane. Therefore, the conductivity of the film was highly anisotropic, differing by at least 8 orders of magnitude in directions parallel and perpendicular to the film plane, even though the in-plane conductivity (2.8 x10(-6) S/cm) was in the range of semiconductors. If self-assembled nanodomains of diblock copolymers were not employed, a serial layer-by-layer process for each layer would be required to fabricate such an electrically anisotropic thin film.  相似文献   
7.
Mesoporous TiO(2) materials with various pore-size distributions were synthesized by using diblock copolymers via a sol-gel process in aqueous solution. The properties of these materials were characterized by FE-SEM, HR-TEM, XRD, DRS, BET, and BJH analysis. All particles have spherical morphology with a diameter range of 1-3 mum. The mesoporous TiO(2) materials calcined at 400 degrees C were found to have different specific surface areas - 186, 210, and 192 m(2) g(-1) - and average pore sizes depending on the type of diblock copolymer-5.1, 6.1, and 6.4 nm-and their crystallite sizes were found to be 8.1, 8.3, and 8.8 nm. The photocatalytic activity of each sample was investigated by measuring the photodecomposition of methylene blue (MB), and the small crystallite size, large surface area, and small pore size were found to exhibit better photocatalytic activities. In addition, the photocatalytic activities of all the mesoporous TiO(2) materials were found to be better than that of commercial TiO(2).  相似文献   
8.
Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe M?ssbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic.  相似文献   
9.
Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.  相似文献   
10.
We successfully evaluated the effects of 2,3,6-per-O-benzoyl-β-cyclodextrin (Bz-β-CD) on the rheological properties of PVC plastisols and the migration behavior of plasticizer from flexible PVC. Two types of plasticizer, di-isononyl phthalate (DINP) and diisononyl cyclohex-4-ene-1,2-dicarboxylate (Neocizer), along with Bz-β-CD as a migration inhibitor were mechanically mixed into an emulsion grade PVC resin to prepare plastisols. The presence of Bz-β-CD was expected to facilitate formation of stable complexes with DINP or Neocizer in the flexible PVC. It was necessary to determine whether changes in the processing conditions of the PVC plastisol were needed for use in this application. To this end, the viscoelastic properties of the plastisols, including the elastic modulus, G′, and the viscous modulus, G″, were continuously monitored as a function of temperature during the gelation and fusion processes using rheological analysis techniques. The results showed that complete gelation was slightly delayed and both moduli (G′ and G″) decreased upon addition of Bz-β-CD to the PVC matrix. FE-SEM images yielded insight into the gelation and fusion processes. The curing conditions and physical properties of the flexible PVCs containing Bz-β-CD were optimized, and the influence of Bz-β-CD on the migration of the plasticizers and the stability of the flexible PVC was studied. The results showed that Bz-β-CD reduced migration of DINP and Neocizer from the flexible PVC by almost 40% and 25%, respectively, thereby favorably restricting migration within the flexible PVC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号