首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   29篇
物理学   2篇
  2022年   1篇
  2021年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Brightness reversion of softwood (SW) and hardwood (HW) bleached chemithermomechanical pulps (BCTMP) with a 300–400nm light source under argon, oxygen, and air were studied in the absence and presence of UV-screens using UV–Vis reflectance difference spectroscopy. The UV-Vis difference absorption spectra of control SW and HW BCTMP testsheets indicate that as the concentration of atmospheric oxygen is increased, the absorption at max 360nm increases and a blue shift occurs. In all of the cases studied, brightness reversion was observed to occur under an argon atmosphere. The addition of benzophenone and benzotriazole additives to BCTMP testsheets resulted in a significant decrease in formation of chromophores absorbed at 400nm and 360nm. The possible mechanisms contributing to these effects are discussed in terms of the photoformation of lignin chromophoric structures.  相似文献   
2.
Jiang N  Ragauskas AJ 《Organic letters》2005,7(17):3689-3692
A room-temperature aerobic oxidation of primary alcohols to aldehydes catalyzed by the three-component system acetamido-TEMPO/Cu(ClO(4))(2)/DMAP in the ionic liquid [bmpy]PF(6) has been developed, and the catalysts can be recycled and reused for five runs without any significant loss of catalytic activity. [reaction: see text]  相似文献   
3.
Petkus V  Ragauskas A  Jurkonis R 《Ultrasonics》2002,40(1-8):829-833
The objectives are to investigate the peculiarities of the ultrasound pulse propagation through human extra/intracranial media by mathematical simulation and to confirm the simulation results experimentally by proving the suitability of the ultrasonic time-of-flight measurement method for human intracranial media (IM) physiological non-invasive monitoring. The mathematical model of ultrasound pulse propagation through the human extra/intracranial media is described. The simulation of various physiological phenomena were performed to determine the relationship between the characteristics of the transmitted ultrasound pulse through the human head and the acoustic properties of the IM. It is shown that non-invasive monitoring of the IM acoustic properties is possible by measuring the changes of the ultrasonic signal time-of-flight and the oscillation period. The influence made by variations in acoustic parameters of the external tissue/skull bones on the non-invasive measurement data is investigated and methods of compensation of that influence are presented. The models were applied for developing of a new non-invasive sonographic intracranial pressure (ICP) monitor (Vittamed). Comparative studies of this monitor with the invasive ICP monitor (Camino) have shown the possibility of achieving clinically acceptable accuracy of the long term non-invasive ICP monitoring of head injured patients in intensive care units.  相似文献   
4.
5.
There is a need for high-performance applications for terephthalic acid (TPA) polyesters with high heat resistance, impact toughness, and optical clarity. Bisphenol A (BPA) based polycarbonates and polyarylates have such properties, but BPA is an endocrine disruptor. Therefore, new TPA polyesters that are less hazardous to health and the environment are becoming popular. Tetramethylcyclobutanediol (TMCD) is a difunctional monomer that can be polymerized with TPA and other diols to yield copolyesters with superior properties to conventional TPA polyesters. It has a cyclobutyl ring that makes it more rigid than cyclohexanedimethanol (CHDM) and EG. Thus, TMCD containing TPA copolyesters can have high heat resistance and impact strength. TPA can be made from abundantly available upcycled polyethylene terephthalate (PET). Therefore, this review discusses the synthesis of monomers and copolyesters, the impact of diol composition on material properties, molecular weight, effects of photodegradation, health safety, and substitution of cyclobutane diols for future polyesters.  相似文献   
6.
A series of one-stage oxygen delignification treatments with a softwood (SW) kraft pulp were studied employing 0.0-0.5% of a bismuth ruthenium pyrochlore oxide catalyst. The results demonstrated that a 0.09-0.18% charge of catalyst in an oxygen stage provided a 52.2-116.0% increase of carboxylic acid groups in the cellulosic component of kraft pulps without a significant decrease in fiber viscosity. A 3-factor at 3-level (L(9)3(3)) orthogonal experimental design was used to identify the main factors influencing acid group formation in pulp carbohydrates. The relative significance of experimental parameters for polysaccharide acid group formation was the molar equivalent NaOH, oxygen pressure, and finally, reaction temperature under the experimental conditions studied. The optimized reaction parameters for fiber charge development were shown to be 85-100 degrees C, 2.5% NaOH, and 800-960 kPa oxygen pressure. Pulps with higher fiber carboxylic acid content introduced by catalytic oxidation during oxygen delignification yielded a 10.9-33.7% increase in fiber charge after elemental chlorine free (ECF) pulp bleaching. The enhanced fiber charge resulted in 6.7-17.1% increase in paper sheet tensile index at comparable pulp viscosity.  相似文献   
7.
Aerobic Alcohol Oxidation. An efficient four-component system consisting of acetamido-TEMPO/Cu(ClO4)2/TMDP/DABCO in DMSO has been developed for room-temperature aerobic alcohol oxidation. Under the optimal conditions, various alcohols could be converted into their corresponding aldehydes or ketones in good to excellent yields. The newly developed catalytic system could also be recycled and reused for three runs without any significant loss of catalytic activity.  相似文献   
8.
9.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was applied to the analysis of the spatial distribution of cellulose on a cross-section of juvenile poplar (Populus deltoids) stems. Microcrystalline cellulose (MCC) was used to optimize matrix (2,5-dihydroxybenzoic acid) application and instrument parameters for the detection of low hexose oligomers, which originated from cellulose in the solid phase. A section of poplar cellulose isolated from juvenile poplar stem which consisted primarily of glucose (~95%) and minor components such as xylose and lignin was used for the MALDI-IMS studies. The mass spectrum of poplar cellulose consisted of a series of evenly spaced signals having a difference of 162 m/z units, which was similar to that of MCC in linear and reflectron positive ion modes. MS images of cellulose compounds with sodium ion adducts were generated and illustrated the distribution of cellulose on the surface of the poplar stem.  相似文献   
10.
A novel real-time in situ detection method for the investigation of cellulase–cellulose interactions based on fluorescence resonance energy transfer (FRET) has been developed. FRET has been widely used in biological and biophysical fields for studies related to proteins, nucleic acids, and small biological molecules. Here, we report the efficient labeling of carboxymethyl cellulose (CMC) with donor dye 5-(aminomethyl)fluorescein and its use as a donor in a FRET assay together with an Alexa Fluor 594 (AF594, acceptor)–cellulase conjugate as acceptor. This methodology was successfully employed to investigate the temperature dependency of cellulase binding to cellulose at a molecular level by monitoring the fluorescence emission change of donor (or acceptor) in a homogeneous liquid environment. It also provides a sound base for ongoing cellulase–cellulose study using cellulosic fiber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号