首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  国内免费   1篇
化学   33篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   23篇
  2024年   1篇
  2021年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2013年   8篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有60条查询结果,搜索用时 250 毫秒
1.
Poly(sodium undecenoyl-L-leucinate) (poly-L-SUL) was fractionated by the use of different molecular weight cutoff (MWCO) filters to narrow the polydispersity of the macromolecular sizes of the polymeric surfactant. The resulting polymeric surfactant fractions were characterized by the use of three techniques: (1) pulsed field gradient nuclear magnetic resonance (PFG-NMR) was used to determine the hydrodynamic radii, (2) analytical ultracentrifugation (AUC) was used to determine the molecular weights, and (3) steady-state fluorescence was used to determine the polarity of the nonfractionated and fractionated polymeric surfactants. From the data acquired from PFG-NMR, AUC, and fluorescence, it was noted that the hydrodynamic radii and molecular weight of the fractionated poly-L-SUL increased, while the polarity decreased with the increase in the size of the MWCO filter. However, a similarity in physical properties was observed between the nonfractionated and 10-30K fractionated poly-L-SUL except for the hydrodynamic radius and diffusion coefficients. The influence of different macromolecular sizes of poly-L-SUL on the chiral separation of phenylthiohydantion (PTH)-amino acids and coumarinic derivatives, as test analytes, was elucidated by the use of micellar electrokinetic chromatography (MEKC). The size of polymeric surfactants as a prerequisite for chiral separation was demonstrated by comparing the separation properties of fractionated versus nonfractionated polymeric surfactants. Fractionated poly-L-SUL resulted in enhanced resolution and separation efficiency of the test analytes as compared to the case of the nonfractionated poly-L-SUL. This observation indicates that minimizing polydispersity of polymeric surfactants may be important for some chiral separation applications.  相似文献   
2.
Journal of Solid State Electrochemistry - Manganese phosphate (Mn3(PO4)2) particles decorated polyaniline (PANI) have been proposed as a promising electrode material for supercapacitors. Mn3(PO4)2...  相似文献   
3.
We have successfully developed a ‘turn-on’ colorimetric chemosensor for Fe3+ based on 1,10-phenanthroline. An amide derivative of 1,10-phenanthroline 4 was developed for the selective recognition of Fe3+ over Co2+, Cr3+, Cu2+, Mn2+, Ni2+, Ag+ and Zn2+ and could measure Fe3+ concentration in the range of 15–210 μM by UV–vis spectroscopy. Moreover, the addition of Fe3+ to a colourless solution of 4 turned its colour to light pink, indicating that 4 is capable of detecting Fe3+ by the naked eye. Compound 4 exhibits a major absorption band centred at 268 which shifted to 278 nm after addition of Fe3+, and a shoulder band around 514 nm was also observed. The complexation of Fe3+ with 4 was analysed at a different pH and favourable binding was observed at pH 6.2.  相似文献   
4.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   
5.
The discovery of the fullerene molecules and related forms of carbon such as nanotubes has generated an explosion of activity in chemistry, physics, and materials science. Classical fullerene is an all-carbon molecule in which the atoms are arranged on a pseudospherical framework made up entirely of pentagons and hexagons. A toroidal fullerene (toroidal polyhex) is a cubic bipartite graph embedded on the torus such that each face is a hexagon. In this paper we examine the existence of entire labeling, where face-weights of all 6-sided faces of disjoint union of toroidal fullerenes form an arithmetic progression with common difference \(\hbox {d}\in \{1,2,3\}\).  相似文献   
6.
7.
Quantum confinement effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu2+ doped K2Ca2(SO4)3 microcrystalline sample observed at ~436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f65d energy level of Eu2+. Energy band gap values of the micro and nanocrystalline K2Ca2(SO4)3 samples were also determined by measuring the UV–visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.  相似文献   
8.
K2Ca2(SO4)3 microcrystalline pure, doped with Eu, Tb and co-doped with Eu, Tb was prepared by solid-state diffusion method. Nanoparticles of these phosphors were also prepared by the chemical co-precipitation method. The formation of the compounds was confirmed by XRD. The particle size was calculated by broadening of the XRD peaks using Scherrer's formula. The particle size of nanocrystalline powder material was approximately found to be around 20 nm. Thermoluminescence and photoluminescence were studied to see the effect of co-doping and particle size. Tb3+ co-doping decreases the intensity in the Eu2+ doped phosphor due to the energy transfer and multiple de-excitations through various radiative and non-radiative processes. The sensitivity of K2Ca2(SO4)3:Eu,Tb microcrystalline phosphor was around 15 times more than LiF-TLD 100 and 7 times more than CaSO4:Dy. A high temperature peak (615 K) was observed in case of the nanoparticles, which was attributed to a particle size induced phase transition. This was confirmed by differential scanning calormetry measurements. The decrease in the sensitivity in case of nanoparticles is attributed to the particle size effect i.e. volume to surface ratio. Theoretical analysis of the glow curves was done by glow curve convolution deconvolution method to calculate trapping parameters of various peaks.  相似文献   
9.
10.
Zirconyl chloride upon hydrolysis in water to form Zr(OH)+ has been found to react to form a fluorescent derivative with not only a ketose such as fructose but also a hexose such as glucose and the disaccharide sucrose. When reaction conditions such as a temperature of 99°C and a time of 60 min are used, detection limits below 1 μg/mL are possible. All three zirconyl–sugar derivatives show very similar absorbance and fluorescence spectra, indicating a common mechanism involving formation of an enediol which can be complexed with ZrOH+ is likely. Because the reactivity order is glucose < sucrose < fructose, the reaction can be made selective for fructose at a lower reaction temperature and time such as 60°C at 5 min. Because interference from ascorbic acid and caffeine is also avoided, the fluorescent determination of fructose in soft drink samples after simply a dilution step is possible. We have also employed this reaction for flow injection analysis (FIA) using a polystyrene–divinylbenzene-packed HPLC column as a mixing device. Using a 0.01 M HClO4 with 1% zirconyl chloride carrier, we obtained a linear calibration curve from 2 to 30 μg/mL with a correlation coefficient of 0.994. A detection limit less than 2 μg/mL was possible. A comparison of results for the FIA of soft drinks with the enzymatic method involving fructose-5-dehydrogenase confirmed the FIA method was quite specific for fructose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号