首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   8篇
物理学   2篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2007年   2篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The Nernst?CPlanck equations with some additional assumptions was used in this study to investigate the forward kinetics and ion-exchange mechanism of heavy metal ions viz. Ni2+?CH+, Cu2+?CH+, Mn2+?CH+ and Zn2+?CH+ on the surface of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation-exchanger. It was observed that heavy metals' exchange processes were imparted by the particle diffusion-controlled phenomenon. Some physical parameters i.e., fractional attainment of equilibrium U(??), self-diffusion coefficients (D o), energy of activation (E a), and entropy of activation (??S*) were estimated. These investigations revealed that the equilibrium is attained faster at higher temperature probably because of availability of thermally enlarged matrix of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation-exchange material. The physical parameters observed for this composite cation exchanger were also compared with other composite ion exchangers. The results showed that the ion-exchange phenomenon is more feasible on the surface of this composite cation exchanger as compared with the other ion exchangers which indicated the usefulness of this composite ion exchanger in various applications.  相似文献   
2.
An organic-inorganic composite cation exchanger poly (3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) Zr(IV) phosphate was prepared by the sol-gel method for removal of cadmium, a toxic heavy metal pollutant causing adverse effects on human health. The synthesized material was characterized by various techniques such as thermo gravimetric analysis/differential thermal analysis/differential thermo gravimetry (TGA/DTA/DTG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Organic polymer PEDOT:PSS binds with the inorganic counterpart and prevents the leaching of the inorganic parts, hence PEDOT:PSS Zr(IV) phosphate composite cation exchanger has improved ion exchange capacity than inorganic ion exchanger. The composite cation exchanger was found selective towards Cd(II) ions. The nature and composition of contacting solvents influence the selectivity of composite cation exchanger. The composite cation exchanger may be used for the removal of cadmium a toxic heavy metal ion.  相似文献   
3.
The thermodynamics of nicotinic acid adsorption from aqueous solution on carboxymethyl cellulose Ce(IV) molybdophosphate composite cation exchanger were studied. The composite cation exchanger was synthesized by sol–gel method and thereby characterized using scanning electron microscopy, thermogravimetric analysis, X-ray powder diffraction and fourier transform infra red spectroscopy. The analytical applicability and thermodynamic parameters, such as Freundlich constant, thermodynamic equilibrium constant (K ο), standard free energy changes (Δ), standard enthalpy changes (Δ) and standard entropy changes (Δ) of this composite cation exchanger have been evaluated. The thermodynamic parameters showed that the adsorption of nicotinic acid onto composite cation exchanger is feasible, spontaneous and exothermic, suggesting their suitability for the potential application of nicotinic acid removal from waste water.  相似文献   
4.
A single wall carbon nanotubes (SWNTs)/graphene/ferritin/GOx layer on a glassy carbon electrode (GCE) acting as a biofuel cell anode was fabricated using a SWNTs/graphene/ferritin composite as an electron transfer mediator from the enzyme to the electrode. In the presence of glucose, the SWNTs/graphene/ferritin/GOx composite showed a higher current response than SWNTs/graphene/GOx composite and the electrocatalytic oxidation of glucose on the anode increased linearly with increasing concentration of glucose. The highly distributed SWNTs/graphene/ferritin composite acts as a platform for enzyme immobilization resulted in an enhanced electrocatalytic activity towards glucose. The SWNTs/graphene/ferritin composite showed an enhanced electron transfer from enzyme to the electrode; therefore, SWNTs/graphene/ferritin/GOx composite can be used as an anode in biofuel cells.  相似文献   
5.
The characterization of polyvinyl chloride (PVC)-based cerium(IV) sulphate (CS) composite membrane was carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite membrane with 0.175 g PVC and 0.375 g CS proves good chemical, mechanical and thermal stabilities as well as ion exchange capacity. The Teorell, Meyer and Sievers (TMS) method was used to determine the electrochemical parameters such as transport number, mobility ratio and surface charge density of the membrane. The mobility ratio of various univalent electrolytes depends on the electrolyte concentration and follows the decreasing order LiCl > NaCl > KCl. This membrane may be used for treatment of food industry wastewater as well as desalination of sea and brackish waters.  相似文献   
6.
Carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger with diameter in the range of 20–40 nm, length in the range of 100–150 μm and particle size in the range of 21–38 nm have been successfully prepared by surfactant assisted sol–gel method. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, fourier transform infra red spectroscopy and thermogravimetric analysis-differential thermal analysis studies were carried out to study the structure and morphology of this composite nano-rod like cation exchanger. Freundlich adsorption isotherm is well fitted for the adsorption of pyridine on the surface of this composite nano-rod like cation exchanger. The thermodynamic parameters such as Freundlich constant, thermodynamic equilibrium constant (K 0), standard free energy changes (ΔG 0), standard enthalpy changes (ΔH 0) and standard entropy changes (ΔS 0) have been evaluated. These parameters indicated that the adsorption of pyridine on the surface of composite nano-rod like cation exchanger was feasible, spontaneous and exothermic in nature which suggests for the potential application of pyridine removal from water.  相似文献   
7.
Ion-selective membrane electrodes commonly known as electrochemical sensors are important in view of the ability to make direct or indirect measurement of various metal ions. The fact is that the use of ion-selective electrodes for such type of measurements requires relatively inexpensive equipment, which makes ion-selective electrodes attractive to scientists in many disciplines. Thus, potentometric sensors can offer an inexpensive and convenient method for the analysis of heavy metal ions in solutions providing acceptable sensitivity and selectivity. For this purpose, many organic, inorganic, chelating, intercalating and composite materials were studied as electroactive materials for the preparation of ion-selective membrane electrodes. The present study provides a detailed review of literature for the fabrication, characterization and analytical applications of ion-selective membrane electrode based on different electro active components.  相似文献   
8.
Inamuddin  Asif Ali Khan 《Talanta》2007,71(2):841-847
Organic-inorganic hybrid materials enable the integration of useful organic and inorganic characteristics within a single molecular-scale composite. Unique ion-exchange properties of these types of materials have been observed, and many others can be envisioned for this promising class of materials. In this paper, we describe the ion-exchange and physico-chemical properties of one family of self-assembling organic-inorganic hybrid based on nylon-6,6, framework with Zr(IV) phosphate an inorganic ion-exchanger. The physico-chemical properties of this hybrid material were determined using atomic absorption spectrophotometry (AAS), CHN elemental analysis, ICP-MS, UV-vis spectrophotometry, FTIR, TGA-DTA and scanning electron microscope (SEM) studies. Ion-exchange capacity (IEC), thermal stability and distribution behavior, etc. were also carried out to understand the cation-exchange behavior of the material. On the basis of distribution studies, the material was found to be highly selective for Hg(II), a highly toxic environmental pollutant. Its selectivity was examined by achieving some important binary separations like Hg(II)-Mg(II), Hg(II)-Zn(II), Hg(II)-Fe(III), Hg(II)-Bi(III), etc. Thus, the relatively new field of “organic-inorganic” hybrids offers a variety of exciting technological opportunities to decrease the environmental pollution.  相似文献   
9.
A Pb2+ ion selective membrane electrode based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchange material was fabricated using solution casting method. The effect of membrane composition on the proton exchange capacity was investigated by using varying amounts of electroactive material. The membrane with 250 mg of electroactive material and 10 µL of plasticiser exhibited higher proton conductivity. The optimised membrane composition was used for the fabrication of ion selective membrane electrode which exhibited typical Nernstian response towards Pb2+ ions in the concentration range 20.70 gL?1–20.7 µgL?1 (1 × 10–1–1 × 10–7 mol L?1) with a sub-Nernstian slope of 27.429 mV per decade change in Pb2+ ion concentration. The response time of the electrode under study for Pb2+ ions was found to be 11 s and the electrode can be used for 120 days without any considerable divergence in response potential. It can also be successfully used in the pH range from 3.0 to 6.5. It was found selective for Pb2+ ions in the presence of various monovalent, divalent and trivalent interfering metal ions. It was also employed as an indicator electrode in the potentiometric titration of Pb2+ ions using ethylenediaminetetraacetic acid, disodium salt, as a titrant.  相似文献   
10.
An organic-inorganic hybrid poly-o-toluidine Th(IV) phosphate was chemically synthesized by mixing ortho-tolidine into the gel of Th(IV) phosphate in different mixing volume ratios, concentration of inorganic reactant with a fixed mixing volume ratios of organic polymer. The physico-chemical characterization was carried out by elemental analysis, TEM, SEM, XRD, FTIR and simultaneous TGA-DTA studies. The ion-exchange capacity, chemical stability, effect of eluant concentration, elution behavior and pH titration studies were also carried out to understand the ion-exchange capabilities. The distribution studies revealed that the cation-exchange material is highly selective for Hg2+, which is an important environmental pollutant. Due to selective nature of the cation-exchanger ion-selective membrane electrode was fabricated for the determination of Hg(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号