首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   1篇
化学   110篇
物理学   11篇
  2015年   3篇
  2014年   2篇
  2013年   14篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
  1962年   1篇
排序方式: 共有121条查询结果,搜索用时 20 毫秒
1.
Following our continued interest in the production of bioerodible and biodegradable functional polymers for biomedical applications, we synthesized and characterized new unsaturated polyesters. The presence of functional groups in the polymer backbone provided sites for chemical modification, and through a variation in the structure, the physical properties, such as the hydrophilicity and solubility, could be affected. With 1,1-di-n-butyl-stanna-2,7-dioxacyclo-4-heptene as the initiator in the ring-opening polymerization of polyesters, a new set of functionalized polyesters was created. The polymerization of ϵ-caprolactone resulted in poly(ϵ-caprolactone) with a double bond incorporated into the structure. The polymers were obtained in a controlled manner with low molecular dispersities. The double bond was previously incorporated into L -lactide polymers, and the two reactions were compared in this study. The conversion of ϵ-caprolactone, with a degree of polymerization of 50, was completed within 140 min, whereas for L -lactide, only a 45% conversion took place in the same period of time. The dispersities were somewhat higher with ϵ-caprolactone because of the higher reaction rate and, therefore, lower selectivity. The incorporated CC double bond in the polyesters provided a variety of opportunities for further modifications. In this case, the double bond of the L -lactide macromonomers was oxidized into epoxides. Epoxidation was carried out with m-chloroperoxybenzoic acid as a chemical reagent. The conversion of the double bonds into epoxides was completed, and the obtained yields were good (>95%). As a result of the mild reaction conditions, the epoxidation of the double bond was carried out quantitatively without any side reactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 444–452, 2004  相似文献   
2.
Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.  相似文献   
3.
Three block copolymers of poly(ethylene succinate) and poly(tetramethylene glycol) with about 20, 54, and 59 mol% polyether have been prepared and subjected to hydrolytic degradation at 37°C. The sample containing 59 mol% showed drastic changes in the properties after 3 months of degradation, whereas the other samples exhibited only minor changes. The tensile strength was completely lost, the molecular weight had decreased to 7% of the original value, and the crystallinity (measured as heat of fusion) had more than doubled. IR and 1H-NMR analyses showed that the rates of release of the different polymeric blocks varied throughout the period of hydrolytic degradation. Fibers of the block copolymer poly(ethylene succinate)/poly(tetramethylene glycol) with poly(tetramethylene glycol) fractions ranging from 20 to 50 mol% have been analyzed by 13 C NMR to determine the molecular weights of the PES blocks and by reflection IR, ESCA, and SEM to investigate the surface composition. The molecular weights of the polyester blocks were inversely proportional to the mol% of polyether, and the values were in agreement with theoretical calculated values. The surface concentration of the polyether was found to be higher than that in the bulk and also independent of the mol% polyether in the range of study. A degradation mechanism is proposed which involves a combined effect of surface erosion and hydrolytic attack on the ester linkages connecting the amorphous polyether and the crystalline polyester blocks.  相似文献   
4.
We present a neutron scattering investigation on a miscible blend of two polymers with greatly different glass-transition temperatures Tg. Under such conditions, the nearly frozen high-Tg component imposes a random environment on the mobile chain. The results demand the consideration of a distribution of heterogeneous mobilities in the material and demonstrate that the larger scale dynamics of the fast component is not determined by the average local environment alone. This distribution of mobilities can be mapped quantitatively on the spectrum of local relaxation rates measured at high momentum transfers.  相似文献   
5.
6.
7.
A rubidium titanyl arsenate single‐crystal has been studied by neutron diffraction (λ = 1.207 Å). The polished sample used was 5 × 3 × 2 mm and was cut from a crystal made by top‐seeded solution growth. The crystal showed severe extinction. It was, however, possible to obtain a structural model with well defined oxy­gen sites and reasonable anisotropic displacement parameters.  相似文献   
8.
Star‐shaped homo‐ and copolymers were synthesized in a controlled fashion using two different initiating systems. Homopolymers of ε‐caprolactone, L ‐lactide, and 1,5‐dioxepan‐2‐one were firstly polymerized using (I) a spirocyclic tin initiator and (II) stannous octoate (cocatalyst) together with pentaerythritol ethoxylate 15/4 EO/OH (coinitiator), to give polymers with identical core moieties. Our gained understanding of the versatile and controllable initiator systems kinetics, the transesterification reactions occurring, and the role which the reaction conditions play on the material outcome, made it possible to tailor the copolymer microstructure. Two strategies were used to successfully synthesize copolymers of different microstructures with the two initiator systems, i.e., a more multiblock‐ or a block‐structure. The correct choice of the monomer addition order enabled two distinct blocks to be created for the copolymers of poly(DXO‐co‐LLA) and poly(CL‐co‐LLA). In the case of poly(CL‐co‐DXO), multiblock copolymers were created using both systems whereas longer blocks were created with the spirocyclic tin initiator. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1249–1264, 2008  相似文献   
9.
Poly(trimethylolpropane trimethacrylate) microspheres with a narrow size distribution were obtained by precipitation polymerization. They were subsequently modified by surface grafting with acrylic acid in a polar ethanol–water reaction medium, without stabilizer, yielding core‐shell particles with diameters in the micrometer range. The resulting polymeric material was characterized by SEM and potentiometric titration, FTIR spectroscopy, and thermal analysis. It was shown that the particle characteristics (size, size distribution, and functionality) obtained by this straightforward procedure can be controlled by modifying the synthesis parameters (monomer concentration, agitation rate, and temperature). The high functionality, the chemical and physico‐mechanical stability, as well as the possibility to control the performances of the resulting polymeric materials by synthesis allow its applications in various areas. Envisaging separation and catalysis domains, Cu(II), Cd(II), and Cr(III) uptake capacity from aqueous solutions was investigated under noncompetitive conditions as a function of synthesized particle functionality, time, and pH range. It was also found that the addition of the carboxylated microparticles to polyethylene stabilized with α‐tocopherol improved the thermo‐oxidative behaviour of the polymeric material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5889–5898, 2005  相似文献   
10.
A solid-phase extraction (SPE) method using unbonded silica (Si) and silica bonded with octadecyl (C18) or aminopropyl (NH2) groups was developed to separate into five fractions the highly complex mixture of low-molecular-mass degradation products formed from degradable polymers. Application of the method to polyethylene modified with starch and/or a pro-oxidant system, degraded for 30 weeks in water at 95°C, enabled the identification by GC-MS of over three times as many products as when the sample was prepared by liquid-liquid extraction. Over 60 degradation products were identified in each sample; mainly dicarboxylic acids, monocarboxylic acids and n-alkanes. In addition, several lactones, aldehydes and alcohols were detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号