首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2018年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The kinetics of the gas‐phase thermal decomposition of the α‐ketoester methyl benzoylformate was carried out in a static system with reaction vessel deactivated with allyl bromide, and in the presence of the free radical inhibitor propene. The rate coefficients were determined over the temperature range of 440–481 °C and pressures from 32 to 80 Torr. The reaction was found to be homogenous, unimolecular and obey a first‐order rate law. The products are methyl benzoate and CO. The temperature dependence of the rate coefficient gives the following Arrhenius parameters: log10 k (s?1) = 13.56 ± 0.31 and Ea (kJ mol?1) = 232.6 ± 4.4. Theoretical calculations of the kinetic and thermodynamic parameters are in good agreement with the experimental values using PBE1PBE/6‐311++g(d,p). A theoretical Arrhenius plot was constructed at this level of theory, and the good agreement with the experimental Arrhenius plot suggests that this model of transition state may describe reasonably the elimination process. These results suggest a concerted non‐synchronous semi‐polar three‐membered cyclic transition state type of mechanism. The most advanced coordinate is the bond breaking Cδ+‐‐‐δ‐OCH3 with an evolution of 66.7%, implying this as the limiting factor of the elimination process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
Keto–enol tautomeric equilibrium and the mechanism of thermal conversion of 2- and 4-hydroxyacetophenone in gas phase have been studied by means of electronic structure calculations using density functional theory (DFT). A topological analysis of electron density evidence that the structure of keto and enol forms of 2-hydroxyacetophenone are stabilised by a relatively strong intramolecular hydrogen bond. 2- and 4-hydroxyacetophenone undergo deacetylation reactions yielding phenol and ketene. Two possible mechanisms are considered for these eliminations: the process takes place from the keto form (mechanism A), or occurs from the enolic form of the substrate (mechanism B). Quantum chemical calculations support the mechanism B, being found a good agreement with the experimental activation parameters. These results suggest that the rate-limiting step is the reaction of the enol through a concerted, non-synchronous, semi-polar, four-membered cyclic transition state (TS). The most advanced reaction coordinate in the TS is the rupture of O1···H1 bond, with an evolution in the order of 79.7%–80.9%. Theoretical results also suggest a three-step mechanism for the phenyl acetate formation from 2-hydroxyacetophenone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号