首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
化学   21篇
力学   5篇
数学   4篇
物理学   12篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  1985年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Certain diseases are known to cause changes in the physical and biomechanical properties of cells.These include cancer,malaria,and sickle cell anemia among others.Typically,such physical property changes can result in several fold increases or decreases in cell stiffness,which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions.While there are developed biochemical and biological assays to detect the onset or presence of diseases,there is always a need to develop more rapid,precise,and sensitive methods to detect and diagnose diseases.Biomechanical property changes can play a significant role in this regard.As such,research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression,but can also serve as a powerful tool for detection and diagnosis.This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis.We will also showcase several technologies that have already been developed to perform such detection and diagnosis.  相似文献   
2.
3.
A general method is considered for the construction of the tensor Green function for Maxwell's equations in a layered medium. An efficient algorithm for the evaluation of the tensor Green function is proposed. The properties of various components of the Green tensor are investigated.  相似文献   
4.
Modification of nano‐WO3 with ?SO3H groups as a covalently grafted solid acid reduced its band‐gap energy from 2.8 to 2.4 eV and made it an ideal nominee for photocatalytic reaction under visible light irradiation. This nano‐photocatalyst has been successfully used for the selective oxidation of different benzyl alcohols to corresponding aldehydes under blue LED irradiation. The reaction became approximately two times faster with excellent yields. It has shown that the nitrobenzene as an available industrial oxidant is applicable for photocatalytic oxidation of benzyl alcohol; remarkably high yield and selectivity have been observed.  相似文献   
5.
In this study, magnetically recoverable vanadium complexs designated as VO(Sal-Tryp)/AmpSCMNPs and VO(Sal-His)/AmpSCMNPs were prepared through immobilization of Schiff bases of histidine or tryptophan with salicylaldehyde on the surface of modified silica coated iron oxide magnetite nanoparticles with (3-aminopropyl) trimethoxysilane as aminopropyl (Amp) spacer followed by complexation with VOSO4. Characterization was carried out by chemical analysis, Fourier transform infrared spectroscopy, XRD, scanning electron microscopy and vibrating sample magnetometry techniques. VO(Sal-Tryp)/AmpSCMNPs and VO(Sal-His)/AmpSCMNP were found to catalyze the epoxidation of allyl alcohols and olefins with tert-butyl hydroperoxide with excellent conversions and selectivities. Investigation of the stability and reusability revealed the heterogeneity character of the catalyst with no desorption during the course of epoxidation reactions. High yields, clean reactions, easily catalyst separation and recyclability of the solid catalyst are some advantages of this method.  相似文献   
6.
We find that spontaneously broken parity ( $P$ ) or left–right symmetry stabilizes dark matter in a beautiful way. If dark matter has a non-real intrinsic parity $\pm i$ (e.g. if it entails Majorana fermions), parity can ensure that it cannot decay to all normal particles with real intrinsic parities. However, if Majorana couplings are absent either in the lepton or the dark sector, $P$ symmetry can be redefined to remove relative non-real intrinsic phases. It is therefore predicted that neutrinos and dark matter fermions must have Majorana masses if dark matter is stable due to parity. The strong CP problem is solved by additionally imposing CP and including vectorlike fermions that help generate CP violation. If leptonlike heavy fermions are provided purely imaginary intrinsic parity phase, they do not couple to the usual leptons, and leptonic CP phases are not generated, which is a testable prediction. Experimentally if leptonic CP phases are not found (if they are consistent with $0$ or $\pi $ ) it can be evidence for the type of models in this work where CP is spontaneously or softly broken and there is also a second hidden or softly broken symmetry such as $P$ , $Z_2$ or $Z_4$ . However, leptonic CP violation can be present in closely related or some non-minimal versions of these models, such as by also including vectorlike leptons with real intrinsic parities.  相似文献   
7.
This paper deals with an analytical approach of the buckling behavior of a functionally graded circular cylindrical shell under axial pressure with external axial and circumferential stiffeners. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations and equilibrium and stability equations are derived using the third-order shear deformation theory. The resulting equations are employed to obtain the closed-form solution for the critical buckling loads. A simply supported boundary condition is considered for both edges of the shell. The comparison of the results of this study with those in the literature validates the present analysis. The effects of material composition (volume fraction exponent), of the number of stiffeners and of shell geometry parameters on the characteristics of the critical buckling load are described. The analytical results are compared and validated using the finite-element method. The results show that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners considerably affect the critical buckling loads.  相似文献   
8.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   
9.
A minimal extension of a Π01 class P is a Π01 class Q such that P ? Q, Q – P is infinite, and for any Π01 class R, if P ? R ? Q, then either R – P is finite or Q – R is finite; Q is a nontrivial minimal extension of P if in addition P and Q′ have the same Cantor‐Bendixson derivative. We show that for any class P which has a single limit point A, and that point of degree ≤ 0 , P admits a nontrivial minimal extension. We also show that as long as P is infinite, then P does not admit any decidable nontrivial minimal extension Q. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
In this paper, the finite-element method (FEM) simulation of ultrasound brain surgery is presented. The overheating problem of the post-target bone, which is one of the limiting factors for a successful ultrasound brain surgery, is considered. In order to decrease bone heating, precise choices of frequency, focal pressure, and scanning path are needed. The effect of variations in the mentioned scanning parameters is studied by means of the FEM. The resulting pressure and temperature distributions of a transdural ultrasound brain surgery are simulated by employing the FEM for solving the Helmholtz and bioheat equations in the context of a two-dimensional MRI-based brain model. Our results show that for a suitable value of the frequency, an increase in focal pressure leads to a decrease in the required duration of the treatment and is associated with less heating of the surrounding normal tissue. In addition, it is shown that at a threshold focal pressure, the target temperature reaches toxic levels whereas the temperature rise in the bone is minimal. Wave reflections from sinus cavities, which result in constructive interference with the incoming waves, are one of the reasons for overheating of the bone and can be avoided by choosing a suitable scanning path.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号