首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   1篇
力学   1篇
数学   5篇
物理学   8篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
排序方式: 共有15条查询结果,搜索用时 187 毫秒
1.
We consider an initial-boundary value problem for a nonlinear parabolic system. Using perturbation methods, this problem is reduced to one of considering an evolution equation for the long-time asymptotics of the system. This model can be related to the leading order approximation for a spatially inhomogeneous reaction-diffusion system with time-dependent forcing. The evolution equation yields solutions with steady state shocks. We study some of the subtle effects introduced by time-dependent forcing. Most significant among these effects is the creation of “forbidden regions” where stationary shocks cannot form. Results are presented for bi- and tri-stable one-dimensional models as well as multidimensional systems.  相似文献   
2.
Large-amplitude, in-plane beam vibration is investigated using numerical simulations and a perturbation analysis applied to the dynamic elastica model. The governing non-linear boundary value problem is described in terms of the arclength, and the beam is treated as inextensible. The self-weight of the beam is included in the equations. First, a finite difference numerical method is introduced. The system is discretized along the arclength, and second-order-accurate finite difference formulas are used to generate time series of large-amplitude motion of an upright cantilever. Secondly, a perturbation method (the method of multiple scales) is applied to obtain approximate solutions. An analytical backbone curve is generated, and the results are compared with those in the literature for various boundary conditions where the self-weight of the beam is neglected. The method is also used to characterize large-amplitude first-mode vibration of a cantilever with non-zero self-weight. The perturbation and finite difference results are compared for these cases and are seen to agree for a large range of vibration amplitudes. Finally, large-amplitude motion of a postbuckled, clamped–clamped beam is simulated for varying degrees of buckling and self-weight using the finite difference method, and backbone curves are obtained.  相似文献   
3.
Using asymptotic methods we show that the long-time dynamic behavior in certain systems of nonlinear parabolic differential equations is described by a time-dependent, spatially inhomogeneous nonlinear evolution equation. For problems with multiple stable states, the solution develops sharp fronts separating slowly varying regions. By studying the basins of attraction of Abel's nonlinear differential equation, we demonstrate that the presence of explicit time dependence in the asymptotic evolution equation creates “forbidden regions” where the existence of interfaces is excluded. Consequently, certain configurations of stable states in the nonlinear system become inaccessible and cannot be achieved from any set of real initial conditions.  相似文献   
4.
This paper considers the dynamics of a classical problem in astrophysics, the behavior of spherically symmetric gravitational collapse starting from a uniform, density cloud of interstellar gas. Previous work on this problem proposed a universal self-similar solution for the collapse yielding a collapsed mass much smaller than the mass contained in the initial cloud. This paper demonstrates the existence of a second threshold—not far above the marginal collapse threshold—above which the asymptotic collapse is not universal. In this regime, small changes in the initial data or weak stochastic forcing leads to qualitatively different collapse dynamics. In the absence of instabilities, a progressing wave solution yields a collapsed uniform core with infinite density. Under some conditions the instabilities ultimately lead to the well-known self-similar dynamics. However, other instabilities can cause the density profile to become non-monotone and produce a shock in the velocity. In presenting these results, we outline pitfalls of numerical schemes that can arise when computing collapse.  相似文献   
5.
The long-time asymptotic solutions of initial value problems for the heat equation and the nonlinear porous medium equation are self-similar spreading solutions. The symmetries of the governing equations yield three-parameter families of these solutions given in terms of their mass, center of mass, and variance. Unlike the mass and center of mass, the variance, or “time-shift,” of a solution is not a conserved quantity for the nonlinear problem. We derive an optimal linear estimate of the long-time variance. Newman's Lyapunov functional is used to produce a maximum entropy time-shift estimate. Results are applied to nonlinear merging and time-dependent, inhomogeneously forced diffusion problems.  相似文献   
6.
The dynamics of surface diffusion describes the motion of a surface with its normal velocity given by the surface Laplacian of its mean curvature. This flow conserves the volume enclosed inside the surface while minimizing its surface area. We review the axisymmetric equilibria: the cylinder, sphere, and the Delaunay unduloid. The sphere is stable, while the cylinder is long-wave unstable. A subcritical bifurcation from the cylinder produces a continuous family of unduloid solutions. We present computations that suggest that the stable manifold of the unduloid forms a separatrix between states that relax to the cylinder in infinite time and those that tend toward finite-time pinchoff. We examine the structure of the pinchoff, showing it has self-similar structure, using asymptotic, numerical, and analytical methods. In addition to a previously known similarity solution, we find a countable set of similarity solutions, each with a different asymptotic cone angle. We develop a stability theory in similarity variables that selects the original similarity solution as the only linearly stable one and consequently the only observable solution. We also consider similarity solutions describing the dynamics after the topological transition.  相似文献   
7.
We present experimental and computational results indicating the existence of finite-amplitude fingering solutions in a flow of a thin film of a viscous fluid driven by thermally induced Marangoni stresses. Using carefully controlled experiments, spatially periodic perturbations to the contact line of an initially uniform thin film flow are shown to lead to the development of steady-profile two-dimensional traveling wave fingers. Using an infrared laser and scanning mirror, we impose thermal perturbations with a known wavelength to an initially uniform advancing fluid front. As the front advances in the experiment, we observe convergence to fingers with the initially prescribed wavelength. Experiments and numerical computations show that this family of solutions arises from a subcritical bifurcation.  相似文献   
8.
9.
We study the structure of diffusive layers in solutions of unstable nonlinear diffusion equations. These equations are regularizations of the forward-backward heat equation and have diffusion coefficients that become negative. Such models include the Cahn-Hilliard equation and the pseudoparabolic viscous diffusion equation. Using singular perturbation methods we show that the balance between diffusion and higher-order regularization terms uniquely determines the interface structure in these equations. It is shown that the well-known “equal area” rule for the Cahn-Hilliard equation is a special case of a more general rule for shock construction in the viscous Cahn-Hilliard equation.  相似文献   
10.
We compare the flow behavior of liquid polymer films on silicon wafers coated with either octadecyl-(OTS) or dodecyltrichlorosilane (DTS). Our experiments show that dewetting on DTS is significantly faster than on OTS. We argue that this is tied to the difference in the solid/liquid friction. As the film dewets, the profile of the rim advancing into the undisturbed film is monotonically decaying on DTS but has an oscillatory structure on OTS. For the first time we can describe this transition in terms of a lubrication model with a Navier-slip condition for the flow of a viscous Newtonian liquid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号