首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   9篇
化学   111篇
晶体学   3篇
力学   5篇
数学   6篇
物理学   35篇
  2022年   5篇
  2021年   11篇
  2020年   8篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   14篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有160条查询结果,搜索用时 935 毫秒
1.
This paper reports the results of a variety of experiments carried out for understanding the solvation behavior of potassium thiocyanate in methanol–water mixtures. Electrical conductivity, speed of sound, viscosity, and FT-Raman spectra of potassium thiocyanate solutions in 5 and 10% methanol–water (w/w) mixtures were measured as functions of concentration and temperature. The conductivity and structural relaxation time suggest the ion–solvent and solvent-separated ion–ion associations increase as the salt concentration increases in the mixtures. The Raman band shifts due to the C–O stretching mode of methanol for the solvent mixtures reveal the formation of methanol–water complexes. The significant changes in the Raman bands for the C–N, C–S and O–H stretching modes indicate the presence of SCN−solvent interactions through the N-end, “free” SCN and the solvent-shared ion pairs as potassium thiocyanate is added to the methanol–water mixtures. The relative changes corresponding to H–O–H bending and C–O stretching frequencies indicate that K+ is preferentially solvated by water in these solvent mixtures. The appearance and increase of the intensity of a broad band at ≈940 cm−1 upon salt addition was attributed to the SCN–H2O–K+ solvent-shared ion pairs. No Raman spectral evidence for K+(H2O)n species was observed. The preferential solvation of K+ and SCN in the methanol−water mixtures was verified by the application of the Kirkwood−Buff theory of solutions. This theory confirms that K+ is strongly preferentially solvated by water, whereas SCN is preferentially solvated by the methanol component.  相似文献   
2.
Treatment of heterocyclic β‐ketonitriles 1a,b with hydrazine hydrate and phenylhydrazine afforded the hydrazine derivatives 2a‐d which cyclized in PPA into pyrrolo[3,4‐c]pyrazoles 3a‐d. Reaction of 1a,b with cyanoacetohydrazide furnished the cyanoacetyl pyrrolo[3,4‐c]pyrazoles 4a,b. The hydrazine 2c reacted with β‐diketone and β‐ketoesters to afford pyrazolyl‐pyrrolines 5‐7. Also the later hydrazine reacted with some D‐aldoses and aceteophenone to give the corresponding hydrazones 10‐12 and hydrazine carboxamide derivatives 15a,b respectively.  相似文献   
3.
Cellulose - A greener processing route to replace the current environmentally-unfriendly esterification technique to produce biofuels such as pentyl valerate (PeVa) was explored. This study...  相似文献   
4.
Abdul Wahab 《中国物理 B》2021,30(9):94202-094202
We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system. For atom–field interaction, we construct a spatially dependent field by superimposing three standing-wave fields(SWFs) in 3 D-atom localization. We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts. We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3 D-atom localization. We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography, and Bose–Einstein condensation.  相似文献   
5.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   
6.
7.
Oil refinery is one of the fast growing industries across the globe and it is expected to progress in the near future. The worldwide increase in the generation of refinery wastewater along with strict environmental regulations in the discharge of industrial effluent, persistent efforts have been devoted to recycle and reuse the treated water. The wastewater from the refining operation leads to serious environmental threat to the ecosystem. Therefore, this study aimed to synthesize silica (SiO2) and calcium carbonate nanoparticles (CaCO3) in the reduction of organics from refinery wastewater. The synthesized nanoparticles were employed in the reduction of chemical oxygen demand (COD) from refinery wastewater by studying the influence of solution pH, contact time, dosage of nanoparticles and stirring speed on adsorption performance. From the batch experimental studies, the optimized processing conditions for the reduction of COD using SiO2 nanoparticles are pH 4.0, dosage 0.5 g, stirring speed 125 rpm and 90 min stirring time, and the corresponding values for CaCO3 nanoparticles are pH 8.0, dosage 0.4 g, stirring speed 100 rpm and 90 min stirring time. The study demonstrates that SiO2 and CaCO3 nanoparticles have a promising future in the reduction organics from refinery wastewater in different pH regimes.  相似文献   
8.
Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA–FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.  相似文献   
9.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC-MRR). While broadly and routinely applicable, its capabilities can exceed those of high-resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas-phase separations. GC-MRR is shown to be ideal for compound-specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC-MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   
10.
Wavelet transform is a versatile time‐frequency analysis technique, which allows localization of useful signals in time or space and separates them from noise. The detector output from any analytical instrument is mathematically equivalent to a digital image. Signals obtained in chemical separations that vary in time (e.g., high‐performance liquid chromatography) or space (e.g., planar chromatography) are amenable to wavelet analysis. This article gives an overview of wavelet analysis, and graphically explains all the relevant concepts. Continuous wavelet transform and discrete wavelet transform concepts are pictorially explained along with their chromatographic applications. An example is shown for qualitative peak overlap detection in a noisy chromatogram using continuous wavelet transform. The concept of signal decomposition, denoising, and then signal reconstruction is graphically discussed for discrete wavelet transform. All the digital filters in chromatographic instruments used today potentially broaden and distort narrow peaks. Finally, a low signal‐to‐noise ratio chromatogram is denoised using the procedure. Significant gains (>tenfold) in signal‐to‐noise ratio are shown with wavelet analysis. Peaks that were not initially visible were recovered with good accuracy. Since discrete wavelet transform denoising analysis applies to any detector used in separation science, researchers should strongly consider using wavelets for their research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号