首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
物理学   12篇
  2017年   1篇
  2013年   1篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  1994年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Since more than a decade, abi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength S, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distancer decreases (increases). This yields both the confinement of the hadron constituents (for large values ofr) and their asymptotic freedom (for small values ofr inside the hadron): in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of S onr which had been previously found only on phenomenological and heuristic grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours on calculating meson mass spectra.  相似文献   
2.
Xu Q  Almeida VR  Panepucci RR  Lipson M 《Optics letters》2004,29(14):1626-1628
We experimentally demonstrate a novel silicon waveguide structure for guiding and confining light in nanometer-wide low-refractive-index material. The optical field in the low-index material is enhanced because of the discontinuity of the electric field at high-index-contrast interfaces. We measure a 30% reduction of the effective index of light propagating in the novel structure due to the presence of the nanometer-wide low-index region, evidencing the guiding and confinement of light in the low-index material. We fabricate ring resonators based on the structure and show that the structure can be implemented in highly integrated photonics.  相似文献   
3.
We show high Raman gain in a silicon submicrometer-size planar waveguide. Using high-confinement structures and picosecond pump pulses, we show 3.1-dB net internal gain with 2.8-W peak pump power in a 7-mm-long waveguide. We also analyze experimentally and theoretically the effect of free-carrier absorption on the Raman gain.  相似文献   
4.
5.
Guiding and confining light in void nanostructure   总被引:4,自引:0,他引:4  
Almeida VR  Xu Q  Barrios CA  Lipson M 《Optics letters》2004,29(11):1209-1211
We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at high-index-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2). This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.  相似文献   
6.
Almeida VR  Xu Q  Lipson M 《Optics letters》2005,30(18):2403-2405
We demonstrate integrated semiconductor optical devices with ultrafast temporal responses based on the plasma-dispersion effect. The geometry of the devices removes the dependence of the modulation time on the free-carrier dynamics. We present the theoretical analysis of the performance of such devices. We show that a silicon-based device with a free-carrier lifetime of 1.4 ns can be modulated on a time scale of only 20 ps. The ultrafast operation is verified experimentally.  相似文献   
7.
We propose and demonstrate an efficient coupler for compact mode conversion between a fiber and a submicrometer waveguide. The coupler is composed of high-index-contrast materials and is based on a short taper with a nanometer-sized tip. We show that the micrometer-long silicon-on-insulator-based nanotaper coupler is able to efficiently convert both the mode field profile and the effective index, with a total length as short as 40 microm. We measure an enhancement of the coupling efficiency between an optical fiber and a waveguide by 1 order of magnitude due to the coupler.  相似文献   
8.
Within a purely classical formulation of “strong gravity,” we associated hadron constituents (and even hadrons themselves) with suitable stationary, axisymmetric solutions of certain new Einsteintype equations supposed to describe the strong field inside hadrons. Such equations are nothing but Einstein equations—with cosmological term—suitably scaled down. As a consequence, the cosmological constant Λ and the massesM result in our theory to be scaled up, and transformed into a “hadronic constant” and into “strong masses,” respectively. Due to the unusual range of Λ andM values considered, we met a series of solutions of the Kerr-Newman-de Sitter (KNdS) type with rather interesting properties: aim of the present work is putting forth such results, while “translating” them into the more popular language of ordinary gravity. The requirement that those solutions be stable, i.e., that their temperature (or surface gravity) bevanishingly small, implies the coincidence of at least two of their (in general, three) horizons. Imposing the stability condition of a certain horizon does yield (once chosen the values ofJ, q and Λ) mass and radius of the associated black hole. In the case of ordinary Einstein equations and for stable blackholes of the KNdS type, we get in particular Regge-like relations among massM, angular momentumJ, chargeq and cosmological constant Λ; which did not receive enough attention in the previous literature. For instance, with the standard definitionsQ 2 = Gq2/(4πε 0 c 4), a ≡ J/(Mc), m ≡GM/c 2, in the case Λ=0 in whichm 2=a2+Q2 and ifq is negligible, we findm 2=J. When considering, for simplicity, Λ>0 andJ=0 (andq still negligible), then we obtainm 2 = 1/(9Λ). In the most general case, the condition, for instance, of “triple coincidence” among the three horizons yields for |Λa 2|<< 1 the couple of independent relationsm 2 = 2/(9Λ) andm 2 = 8(a 2 + Q2. Another interesting point is that—with few exceptions—all such relations (amongM, J, q, Λ) lead to solutions that can be regarded as (stable) cosmological models. Work partially supported by INFN, MURST, and CNR and by CNPq, FAPESP, and CAPES.  相似文献   
9.
This work presents a rigorous analysis of optical forces between planar waveguides immersed in an arbitrary background medium. This approach exploits the Minkowski stress tensor formulation, which is compared with a normalized version of the dispersion relation method, showing excellent results agreement for different dielectric fluid media. Due to slot‐waveguide effect, optical forces from TM modes are more sensitive to changes in the fluid refractive index than the TE counterparts. Furthermore, the repulsive optical force from the antisymmetric TM1 mode becomes stronger for higher refractive indexes, whereas the attractive force of the symmetric TM0 mode becomes weaker. The methodology and results presented in this work provide a rigorous analysis of nano‐optomechanical devices actuated by optical forces in a broad range of materials and applications. Therefore, this study may impact areas of light‐induced interactions presenting novel optofluidic and optomechanical functionalities, thus finding applications in nanoscale transport, sensing and manipulation.

  相似文献   

10.
Almeida VR  Lipson M 《Optics letters》2004,29(20):2387-2389
We demonstrate, for the first time to our knowledge, optical bistability on a highly integrated silicon device, using a 5-microm-radius ring resonator. The strong light-confinement nature of the resonator induces nonlinear optical response with low pump power. We show that the optical bistability allows all-optical functionalities, such as switching and memory with microsecond time response and a modulation depth of 10 dB, driven by pump power as low as 45 microW. Silicon optical bistability relies on a fast thermal nonlinear optical effect presenting a 500-kHz modulation bandwidth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号